-
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcv.Rmd
325 lines (219 loc) · 8.36 KB
/
cv.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
---
name: Lampros Sp. Mouselimis
position: ""
address: ""
profilepic: photo.jpg
phone: ""
www: mlampros.github.io/
email: "mouselimislampros@gmail.com"
twitter: lampros_twit
github: mlampros
linkedin: mlampros
googlescholar: JXg3b58AAAAJ
orcid: "0000-0002-8024-1546"
aboutme: "I'm a data & remote sensing analyst and open source author / maintainer of numerous R language packages (CRAN, Github), competent in two programming languages (R, Python) who takes advantage of C++ (in R through the Rcpp and RcppArmadillo packages and in python through Cython) to improve the efficiency of internal functions"
headcolor: 009ACD
date: "`r format(Sys.time(), '%B %Y')`"
output:
vitae::awesomecv:
keep_tex: true
fig_crop: no
always_allow_html: yes
header-includes:
- \usepackage{float}
- \floatplacement{figure}{H} # make every figure with caption = h
params:
work_dir:
value: x
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE, warning = FALSE, message = FALSE)
require(magrittr)
repo_dir = dirname(params$work_dir) # use 'dirname()' because the '.Rmd' file is executed from inside the 'docs' directory, therefore 'docs' is considered as working directory and I have to move one directory upwards
software_path = file.path(repo_dir, "data", "software.csv")
education_path = file.path(repo_dir, "data", "education.csv")
jobs_path = file.path(repo_dir, "data", "jobs.csv")
training_path = file.path(repo_dir, "data", "training.csv")
spoken_languages = file.path(repo_dir, "data", "languages.csv")
technical_sk_path = file.path(repo_dir, "data", "technical_skills.csv")
geospatial_anal_path = file.path(repo_dir, "data", "geospatial_analysis.csv")
personal_data_path = file.path(repo_dir, "data", "personal_data.csv")
```
<br>
![](human_evolution.jpg)
<br>
R-Programming Packages
======================
```{r programming, include=FALSE}
software = readr::read_csv(software_path) %>%
dplyr::arrange(dplyr::desc(when))
```
```{r}
software %>%
vitae::detailed_entries(what = what,
with = package,
when = when,
why = why,
where = glue::glue("{where} ({release})"))
```
\bigskip
\bigskip
Education
=========
```{r education, include=FALSE}
edu = readr::read_csv(education_path)
```
```{r}
vitae::detailed_entries(edu,
when = glue::glue("{start_date}--{end_date}"),
what = degree,
where = loc,
with = uni,
why = details)
```
\bigskip
\bigskip
Experience
==========
```{r work experience, include=FALSE}
jobs = readr::read_csv(jobs_path)
```
```{r}
jobs %>%
vitae::detailed_entries(what = role,
when = glue::glue("{start_date}--{end_date}"),
with = company,
where = where,
why = details)
```
\bigskip
\bigskip
Post Graduate Training
======================
```{r training, include=FALSE}
training = readr::read_csv(training_path)
```
```{r}
training %>%
vitae::detailed_entries(what = institution,
with = glue::glue("{what} [ {with} ]"),
when = certificate,
where = programming,
why = type_education)
```
\bigskip
Spoken Languages
================
```{r spoken languages, include=FALSE}
languages = readr::read_csv(spoken_languages)
```
```{r}
languages %>%
kableExtra::kable(booktabs = T, align = 'c', escape = F, format = "latex") %>%
kableExtra::kable_styling(full_width = F, font_size = 9, latex_options = "HOLD_position", fixed_thead = T) %>%
kableExtra::footnote(
footnote_as_chunk = T,
general_title = " ",
general = "\\\\tiny Common European Framework of Reference for Languages: A1/A2: Basic User. B1/B2: Independent User. C1/C2: Proficient User",
escape = F
) %>%
kableExtra::column_spec(column = 1:6, width = '1.9cm') %>%
kableExtra::column_spec(1, bold = TRUE, color = 'blue') %>%
kableExtra::column_spec(6, bold = TRUE, color = 'green') %>%
kableExtra::column_spec(8, bold = TRUE, color = 'orange') %>%
kableExtra::row_spec(0, color = 'blue')
```
\pagebreak
\bigskip
\bigskip
Technical Skills
================
\bigskip
```{r technical skills, include=FALSE}
technical_skills = readr::read_csv(technical_sk_path)
```
```{r, fig.width = 8, fig.height = 5, fig.align = "left", out.width = "7.6in", out.height = "4.5in"}
technical_skills$level = factor(technical_skills$level, levels = c("Familiar", "Intermediate", "Advanced", "Proficient"))
plt_lev = ggplot2::ggplot(data = technical_skills, ggplot2::aes(x = skill, y = level)) +
ggplot2::geom_tile(mapping = ggplot2::aes(fill = level)) +
ggplot2::facet_wrap(facets = ~type, scales = 'free') +
ggplot2::guides(fill = ggplot2::guide_legend(reverse = TRUE)) +
ggplot2::theme(plot.title = ggplot2::element_text(size = "8", hjust = 0.5, face = "bold", colour = "blue"),
axis.title.x = ggplot2::element_text(size = 8, face = "bold", colour = "blue"),
axis.title.y = ggplot2::element_text(size = 8, face = "bold", colour = "blue"),
axis.text.x = ggplot2::element_text(size = 8, face = "bold", colour = "black", angle = 35, vjust = 1.0, hjust = 1.0),
axis.text.y = ggplot2::element_text(size = 8, face = "bold", colour = "black"),
strip.text.x = ggplot2::element_text(size = 8, face = "bold", colour = "black"),
legend.text = ggplot2::element_text(size = 8, face = "bold", colour = "black"),
legend.position = "top")
plt_lev
```
Geospatial Analysis (Timeline)
==============================
```{r geospatial analysis, include=FALSE}
geospatial_analysis = readr::read_csv(geospatial_anal_path)
```
```{r, fig.width = 8, fig.height = 4, fig.align = "left", out.width = "7.6in", out.height = "4.5in"}
par(oma = c(0,0,0,0)) # set all plot margins to 0 so that the 'geospatial data' can fit in the same page
par(mar = c(0,0,0,0))
geospatial_analysis = geospatial_analysis[, 1:2]
length_downup = seq(from = 0.4, to = 0.9, length = nrow(geospatial_analysis))
timelineS::timelineS(geospatial_analysis,
main = NA,
label.direction = 'downup',
label.length = length_downup, # customize the height of the lines
scale = 'quarter',
scale.font = 1.5,
line.color = "blue",
label.color = "orange",
point.color = "green",
pch = "*",
buffer.days = 720, # this parameter extends the range of the years (bothsides)
labels = geospatial_analysis[[1]], # keep only text and omit the dates
label.cex = 0.6,
label.font = 1)
```
\pagebreak
\bigskip
\bigskip
Personal Data
=============
\bigskip
```{r personal data, include=FALSE}
personal_data = readr::read_csv(personal_data_path)
```
```{r}
personal_data %>%
kableExtra::kable(booktabs = T, align = 'l', escape = F, format = "latex", col.names = NULL) %>%
kableExtra::kable_styling(full_width = F, font_size = 9, latex_options = "HOLD_position", fixed_thead = T) %>%
kableExtra::column_spec(1, bold = TRUE, color = 'blue') %>%
kableExtra::column_spec(2, width = "30em")
```
\bigskip
\bigskip
Publications
============
```{r google scholar, include=FALSE}
pubs <- scholar::get_publications("JXg3b58AAAAJ") %>%
dplyr::mutate(author = author %>%
as.character %>%
stringr::str_trim(),
journal = journal %>%
replace(journal %in% "bioRxiv", "BioRxiv"),
first_author = dplyr::case_when(stringr::str_starts(author, "L Mouselimis") ~ TRUE,
TRUE ~ FALSE),
preprint = dplyr::case_when(journal %in% c("bioRxiv", "BioRxiv") ~ TRUE,
TRUE ~ FALSE)) %>%
dplyr::arrange(desc(year))
```
```{r}
pubs %>%
# dplyr::filter(first_author, !preprint) %>%
vitae::detailed_entries(
what = title,
when = as.character(year),
with = author,
where = journal,
.protect = TRUE
)
```