-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolver.py
157 lines (120 loc) · 4.92 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#
# Exercise scheduling with Mixed Integer Linear Programming
#
import numpy as np
import json
import pandas as pd
import pyomo.environ as pyo
from pyomo.opt import SolverFactory
def main(spec):
G = create_group_matrix(spec)
C = create_constraint_matrix(spec)
model = make_model(G, C, spec)
opt = SolverFactory('glpk')
results = opt.solve(model)
#model.display()
if (results.solver.status == pyo.SolverStatus.ok) and (results.solver.termination_condition == pyo.TerminationCondition.optimal):
pass
elif results.solver.termination_condition == pyo.TerminationCondition.infeasible:
print ("infeasible solution")
exit()
else:
print (str(results.solver))
exit()
D = np.zeros((G.shape[0], spec['n_days']))
for eid, e in enumerate(G.index):
for d in np.arange(spec['n_days']):
D[eid, d] = pyo.value(model.v_exercise_schedule[e,d])
ed = spec['exercise_durations']
DM = np.array([ed[e]['sets'] * (ed[e]['set_duration_sec'] + ed[e]['rest_period_sec']) for e in G.index])
D_time_sec = D * DM[:,np.newaxis]
schedule_time_min = pd.DataFrame(data=D_time_sec / 60, index=G.index, columns=spec['day_names'])
print("Schedule and exercise durations in minutes:")
print(schedule_time_min)
print()
print("Total session durations in minutes:")
print(np.sum(schedule_time_min, axis=0))
def create_group_matrix(spec):
exercises = sorted(spec['exercises'])
eid = dict(zip(exercises, range(len(exercises))))
groups = sorted(set(spec['exercises'].values()))
gid = dict(zip(groups, range(len(groups))))
G = np.zeros((len(exercises), len(groups)), dtype=int)
for e, g in spec['exercises'].items():
G[ eid[e], gid[g] ] = 1
return pd.DataFrame(data=G, index=exercises, columns=groups)
def create_constraint_matrix(spec):
exercises = sorted(spec['exercise_counts'])
eid = dict(zip(exercises, range(len(exercises))))
C = [spec['exercise_counts'][e] for e in exercises]
return pd.DataFrame(data=C, index=exercises, columns=['count']).astype(int)
def make_model(G, C, spec):
model = pyo.ConcreteModel()
#
# sets
#
model.exercises = G.index
model.groups = G.columns
model.days = np.arange(spec['n_days'])
#
# variables
#
model.v_exercise_schedule = pyo.Var(model.exercises, model.days, domain=pyo.Binary)
model.v_group_schedule = pyo.Var(model.groups, model.days, domain=pyo.Binary)
model.v_working_days = pyo.Var(model.days, domain=pyo.Binary)
#
# optimization objective
#
model.obj = pyo.Objective(expr = sum(model.v_working_days[d] for d in model.days), sense=pyo.minimize)
#
# constraints
#
#
# meet the minimum # of sessions for each exercise
#
model.c_frequency = pyo.ConstraintList()
for e in model.exercises:
model.c_frequency.add(sum(model.v_exercise_schedule[e, d] for d in model.days) == C.loc[e]['count'])
#
# translate the exercise schedule into the working days schedule
#
model.c_working_days = pyo.ConstraintList()
for d in model.days:
n_working_groups = sum(model.v_group_schedule[g, d] for g in model.groups)
model.c_working_days.add((model.v_working_days[d] * len(model.groups)) >= n_working_groups)
#
# translate the exercise schedule into the group schedule
#
model.c_working_groups = pyo.ConstraintList()
for d in model.days:
for g in model.groups:
n_working_exercises = sum(model.v_exercise_schedule[e, d] * G.loc[e, g] for e in model.exercises)
n_group_exercises = sum(G.loc[e,g] for e in model.exercises)
model.c_working_groups.add((model.v_group_schedule[g, d] * n_group_exercises) >= n_working_exercises)
#
# ensure that groups meet the required minimum recovery duration
#
model.c_recovery = pyo.ConstraintList()
for g in model.groups:
min_recovery_days = spec['group_min_recovery_days'][g]
for k in range(1, min_recovery_days+1):
for d in model.days:
next_day = (d+k) % spec['n_days']
model.c_recovery.add((model.v_group_schedule[g, d] + model.v_group_schedule[g, next_day]) <= 1)
#
# ensure the number of exercises does not exceed the maximum in each day
#
model.c_session_volume = pyo.ConstraintList()
ed = spec['exercise_durations']
for d in model.days:
total_time_sec = sum(model.v_exercise_schedule[e, d] *
(ed[e]['sets'] * (ed[e]['set_duration_sec'] + ed[e]['rest_period_sec']))
for e in model.exercises)
model.c_session_volume.add(total_time_sec <= spec['max_session_duration_minutes'] * 60)
return model
if __name__ == "__main__":
import sys
spec_path = sys.argv[1]
with open(spec_path, 'r') as f:
spec = json.load(f)
main(spec)