forked from microsoft/PQCrypto-SIDH
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathec_isogeny.c
682 lines (582 loc) · 33.4 KB
/
ec_isogeny.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
/********************************************************************************************
* SIDH: an efficient supersingular isogeny cryptography library
*
* Abstract: elliptic curve and isogeny functions
*********************************************************************************************/
void xDBL(const point_proj_t P, point_proj_t Q, const f2elm_t A24plus, const f2elm_t C24)
{ // Doubling of a Montgomery point in projective coordinates (X:Z).
// Input: projective Montgomery x-coordinates P = (X1:Z1), where x1=X1/Z1 and Montgomery curve constants A+2C and 4C.
// Output: projective Montgomery x-coordinates Q = 2*P = (X2:Z2).
f2elm_t t0, t1;
mp2_sub_p2(P->X, P->Z, t0); // t0 = X1-Z1
mp2_add(P->X, P->Z, t1); // t1 = X1+Z1
fp2sqr_mont(t0, t0); // t0 = (X1-Z1)^2
fp2sqr_mont(t1, t1); // t1 = (X1+Z1)^2
fp2mul_mont(C24, t0, Q->Z); // Z2 = C24*(X1-Z1)^2
fp2mul_mont(t1, Q->Z, Q->X); // X2 = C24*(X1-Z1)^2*(X1+Z1)^2
mp2_sub_p2(t1, t0, t1); // t1 = (X1+Z1)^2-(X1-Z1)^2
fp2mul_mont(A24plus, t1, t0); // t0 = A24plus*[(X1+Z1)^2-(X1-Z1)^2]
mp2_add(Q->Z, t0, Q->Z); // Z2 = A24plus*[(X1+Z1)^2-(X1-Z1)^2] + C24*(X1-Z1)^2
fp2mul_mont(Q->Z, t1, Q->Z); // Z2 = [A24plus*[(X1+Z1)^2-(X1-Z1)^2] + C24*(X1-Z1)^2]*[(X1+Z1)^2-(X1-Z1)^2]
}
void xDBLe(const point_proj_t P, point_proj_t Q, const f2elm_t A24plus, const f2elm_t C24, const int e)
{ // Computes [2^e](X:Z) on Montgomery curve with projective constant via e repeated doublings.
// Input: projective Montgomery x-coordinates P = (XP:ZP), such that xP=XP/ZP and Montgomery curve constants A+2C and 4C.
// Output: projective Montgomery x-coordinates Q <- (2^e)*P.
int i;
copy_words((digit_t*)P, (digit_t*)Q, 2*2*NWORDS_FIELD);
for (i = 0; i < e; i++) {
xDBL(Q, Q, A24plus, C24);
}
}
#if (OALICE_BITS % 2 == 1)
void get_2_isog(const point_proj_t P, f2elm_t A, f2elm_t C)
{ // Computes the corresponding 2-isogeny of a projective Montgomery point (X2:Z2) of order 2.
// Input: projective point of order two P = (X2:Z2).
// Output: the 2-isogenous Montgomery curve with projective coefficients A/C.
fp2sqr_mont(P->X, A); // A = X2^2
fp2sqr_mont(P->Z, C); // C = Z2^2
mp2_sub_p2(C, A, A); // A = Z2^2 - X2^2
}
void eval_2_isog(point_proj_t P, point_proj_t Q)
{ // Evaluates the isogeny at the point (X:Z) in the domain of the isogeny, given a 2-isogeny phi.
// Inputs: the projective point P = (X:Z) and the 2-isogeny kernel projetive point Q = (X2:Z2).
// Output: the projective point P = phi(P) = (X:Z) in the codomain.
f2elm_t t0, t1, t2, t3;
mp2_add(Q->X, Q->Z, t0); // t0 = X2+Z2
mp2_sub_p2(Q->X, Q->Z, t1); // t1 = X2-Z2
mp2_add(P->X, P->Z, t2); // t2 = X+Z
mp2_sub_p2(P->X, P->Z, t3); // t3 = X-Z
fp2mul_mont(t0, t3, t0); // t0 = (X2+Z2)*(X-Z)
fp2mul_mont(t1, t2, t1); // t1 = (X2-Z2)*(X+Z)
mp2_add(t0, t1, t2); // t2 = (X2+Z2)*(X-Z) + (X2-Z2)*(X+Z)
mp2_sub_p2(t0, t1, t3); // t3 = (X2+Z2)*(X-Z) - (X2-Z2)*(X+Z)
fp2mul_mont(P->X, t2, P->X); // Xfinal
fp2mul_mont(P->Z, t3, P->Z); // Zfinal
}
#endif
void get_4_isog(const point_proj_t P, f2elm_t A24plus, f2elm_t C24, f2elm_t* coeff)
{ // Computes the corresponding 4-isogeny of a projective Montgomery point (X4:Z4) of order 4.
// Input: projective point of order four P = (X4:Z4).
// Output: the 4-isogenous Montgomery curve with projective coefficients A+2C/4C and the 3 coefficients
// that are used to evaluate the isogeny at a point in eval_4_isog().
mp2_sub_p2(P->X, P->Z, coeff[1]); // coeff[1] = X4-Z4
mp2_add(P->X, P->Z, coeff[2]); // coeff[2] = X4+Z4
fp2sqr_mont(P->Z, coeff[0]); // coeff[0] = Z4^2
mp2_add(coeff[0], coeff[0], coeff[0]); // coeff[0] = 2*Z4^2
fp2sqr_mont(coeff[0], C24); // C24 = 4*Z4^4
mp2_add(coeff[0], coeff[0], coeff[0]); // coeff[0] = 4*Z4^2
fp2sqr_mont(P->X, A24plus); // A24plus = X4^2
mp2_add(A24plus, A24plus, A24plus); // A24plus = 2*X4^2
fp2sqr_mont(A24plus, A24plus); // A24plus = 4*X4^4
}
void eval_4_isog(point_proj_t P, f2elm_t* coeff)
{ // Evaluates the isogeny at the point (X:Z) in the domain of the isogeny, given a 4-isogeny phi defined
// by the 3 coefficients in coeff (computed in the function get_4_isog()).
// Inputs: the coefficients defining the isogeny, and the projective point P = (X:Z).
// Output: the projective point P = phi(P) = (X:Z) in the codomain.
f2elm_t t0, t1;
mp2_add(P->X, P->Z, t0); // t0 = X+Z
mp2_sub_p2(P->X, P->Z, t1); // t1 = X-Z
fp2mul_mont(t0, coeff[1], P->X); // X = (X+Z)*coeff[1]
fp2mul_mont(t1, coeff[2], P->Z); // Z = (X-Z)*coeff[2]
fp2mul_mont(t0, t1, t0); // t0 = (X+Z)*(X-Z)
fp2mul_mont(coeff[0], t0, t0); // t0 = coeff[0]*(X+Z)*(X-Z)
mp2_add(P->X, P->Z, t1); // t1 = (X-Z)*coeff[2] + (X+Z)*coeff[1]
mp2_sub_p2(P->X, P->Z, P->Z); // Z = (X-Z)*coeff[2] - (X+Z)*coeff[1]
fp2sqr_mont(t1, t1); // t1 = [(X-Z)*coeff[2] + (X+Z)*coeff[1]]^2
fp2sqr_mont(P->Z, P->Z); // Z = [(X-Z)*coeff[2] - (X+Z)*coeff[1]]^2
mp2_add(t1, t0, P->X); // X = coeff[0]*(X+Z)*(X-Z) + [(X-Z)*coeff[2] + (X+Z)*coeff[1]]^2
mp2_sub_p2(P->Z, t0, t0); // t0 = [(X-Z)*coeff[2] - (X+Z)*coeff[1]]^2 - coeff[0]*(X+Z)*(X-Z)
fp2mul_mont(P->X, t1, P->X); // Xfinal
fp2mul_mont(P->Z, t0, P->Z); // Zfinal
}
void xTPL(const point_proj_t P, point_proj_t Q, const f2elm_t A24minus, const f2elm_t A24plus)
{ // Tripling of a Montgomery point in projective coordinates (X:Z).
// Input: projective Montgomery x-coordinates P = (X:Z), where x=X/Z and Montgomery curve constants A24plus = A+2C and A24minus = A-2C.
// Output: projective Montgomery x-coordinates Q = 3*P = (X3:Z3).
f2elm_t t0, t1, t2, t3, t4, t5, t6;
mp2_sub_p2(P->X, P->Z, t0); // t0 = X-Z
fp2sqr_mont(t0, t2); // t2 = (X-Z)^2
mp2_add(P->X, P->Z, t1); // t1 = X+Z
fp2sqr_mont(t1, t3); // t3 = (X+Z)^2
mp2_add(P->X, P->X, t4); // t4 = 2*X
mp2_add(P->Z, P->Z, t0); // t0 = 2*Z
fp2sqr_mont(t4, t1); // t1 = 4*X^2
mp2_sub_p2(t1, t3, t1); // t1 = 4*X^2 - (X+Z)^2
mp2_sub_p2(t1, t2, t1); // t1 = 4*X^2 - (X+Z)^2 - (X-Z)^2
fp2mul_mont(A24plus, t3, t5); // t5 = A24plus*(X+Z)^2
fp2mul_mont(t3, t5, t3); // t3 = A24plus*(X+Z)^4
fp2mul_mont(A24minus, t2, t6); // t6 = A24minus*(X-Z)^2
fp2mul_mont(t2, t6, t2); // t2 = A24minus*(X-Z)^4
mp2_sub_p2(t2, t3, t3); // t3 = A24minus*(X-Z)^4 - A24plus*(X+Z)^4
mp2_sub_p2(t5, t6, t2); // t2 = A24plus*(X+Z)^2 - A24minus*(X-Z)^2
fp2mul_mont(t1, t2, t1); // t1 = [4*X^2 - (X+Z)^2 - (X-Z)^2]*[A24plus*(X+Z)^2 - A24minus*(X-Z)^2]
fp2add(t3, t1, t2); // t2 = [4*X^2 - (X+Z)^2 - (X-Z)^2]*[A24plus*(X+Z)^2 - A24minus*(X-Z)^2] + A24minus*(X-Z)^4 - A24plus*(X+Z)^4
fp2sqr_mont(t2, t2); // t2 = t2^2
fp2mul_mont(t4, t2, Q->X); // X3 = 2*X*t2
fp2sub(t3, t1, t1); // t1 = A24minus*(X-Z)^4 - A24plus*(X+Z)^4 - [4*X^2 - (X+Z)^2 - (X-Z)^2]*[A24plus*(X+Z)^2 - A24minus*(X-Z)^2]
fp2sqr_mont(t1, t1); // t1 = t1^2
fp2mul_mont(t0, t1, Q->Z); // Z3 = 2*Z*t1
}
void xTPLe(const point_proj_t P, point_proj_t Q, const f2elm_t A24minus, const f2elm_t A24plus, const int e)
{ // Computes [3^e](X:Z) on Montgomery curve with projective constant via e repeated triplings.
// Input: projective Montgomery x-coordinates P = (XP:ZP), such that xP=XP/ZP and Montgomery curve constants A24plus = A+2C and A24minus = A-2C.
// Output: projective Montgomery x-coordinates Q <- (3^e)*P.
int i;
copy_words((digit_t*)P, (digit_t*)Q, 2*2*NWORDS_FIELD);
for (i = 0; i < e; i++) {
xTPL(Q, Q, A24minus, A24plus);
}
}
void get_3_isog(const point_proj_t P, f2elm_t A24minus, f2elm_t A24plus, f2elm_t* coeff)
{ // Computes the corresponding 3-isogeny of a projective Montgomery point (X3:Z3) of order 3.
// Input: projective point of order three P = (X3:Z3).
// Output: the 3-isogenous Montgomery curve with projective coefficient A/C.
f2elm_t t0, t1, t2, t3, t4;
mp2_sub_p2(P->X, P->Z, coeff[0]); // coeff0 = X-Z
fp2sqr_mont(coeff[0], t0); // t0 = (X-Z)^2
mp2_add(P->X, P->Z, coeff[1]); // coeff1 = X+Z
fp2sqr_mont(coeff[1], t1); // t1 = (X+Z)^2
mp2_add(P->X, P->X, t3); // t3 = 2*X
fp2sqr_mont(t3, t3); // t3 = 4*X^2
fp2sub(t3, t0, t2); // t2 = 4*X^2 - (X-Z)^2
fp2sub(t3, t1, t3); // t3 = 4*X^2 - (X+Z)^2
mp2_add(t0, t3, t4); // t4 = 4*X^2 - (X+Z)^2 + (X-Z)^2
mp2_add(t4, t4, t4); // t4 = 2(4*X^2 - (X+Z)^2 + (X-Z)^2)
mp2_add(t1, t4, t4); // t4 = 8*X^2 - (X+Z)^2 + 2*(X-Z)^2
fp2mul_mont(t2, t4, A24minus); // A24minus = [4*X^2 - (X-Z)^2]*[8*X^2 - (X+Z)^2 + 2*(X-Z)^2]
mp2_add(t1, t2, t4); // t4 = 4*X^2 + (X+Z)^2 - (X-Z)^2
mp2_add(t4, t4, t4); // t4 = 2(4*X^2 + (X+Z)^2 - (X-Z)^2)
mp2_add(t0, t4, t4); // t4 = 8*X^2 + 2*(X+Z)^2 - (X-Z)^2
fp2mul_mont(t3, t4, A24plus); // A24plus = [4*X^2 - (X+Z)^2]*[8*X^2 + 2*(X+Z)^2 - (X-Z)^2]
}
void eval_3_isog(point_proj_t Q, const f2elm_t* coeff)
{ // Computes the 3-isogeny R=phi(X:Z), given projective point (X3:Z3) of order 3 on a Montgomery curve and
// a point P with 2 coefficients in coeff (computed in the function get_3_isog()).
// Inputs: projective points P = (X3:Z3) and Q = (X:Z).
// Output: the projective point Q <- phi(Q) = (X3:Z3).
f2elm_t t0, t1, t2;
mp2_add(Q->X, Q->Z, t0); // t0 = X+Z
mp2_sub_p2(Q->X, Q->Z, t1); // t1 = X-Z
fp2mul_mont(coeff[0], t0, t0); // t0 = coeff0*(X+Z)
fp2mul_mont(coeff[1], t1, t1); // t1 = coeff1*(X-Z)
mp2_add(t0, t1, t2); // t2 = coeff0*(X+Z) + coeff1*(X-Z)
mp2_sub_p2(t1, t0, t0); // t0 = coeff1*(X-Z) - coeff0*(X+Z)
fp2sqr_mont(t2, t2); // t2 = [coeff0*(X+Z) + coeff1*(X-Z)]^2
fp2sqr_mont(t0, t0); // t0 = [coeff1*(X-Z) - coeff0*(X+Z)]^2
fp2mul_mont(Q->X, t2, Q->X); // X3final = X*[coeff0*(X+Z) + coeff1*(X-Z)]^2
fp2mul_mont(Q->Z, t0, Q->Z); // Z3final = Z*[coeff1*(X-Z) - coeff0*(X+Z)]^2
}
void inv_3_way(f2elm_t z1, f2elm_t z2, f2elm_t z3)
{ // 3-way simultaneous inversion
// Input: z1,z2,z3
// Output: 1/z1,1/z2,1/z3 (override inputs).
f2elm_t t0, t1, t2, t3;
fp2mul_mont(z1, z2, t0); // t0 = z1*z2
fp2mul_mont(z3, t0, t1); // t1 = z1*z2*z3
fp2inv_mont(t1); // t1 = 1/(z1*z2*z3)
fp2mul_mont(z3, t1, t2); // t2 = 1/(z1*z2)
fp2mul_mont(t2, z2, t3); // t3 = 1/z1
fp2mul_mont(t2, z1, z2); // z2 = 1/z2
fp2mul_mont(t0, t1, z3); // z3 = 1/z3
fp2copy(t3, z1); // z1 = 1/z1
}
void get_A(const f2elm_t xP, const f2elm_t xQ, const f2elm_t xR, f2elm_t A)
{ // Given the x-coordinates of P, Q, and R, returns the value A corresponding to the Montgomery curve E_A: y^2=x^3+A*x^2+x such that R=Q-P on E_A.
// Input: the x-coordinates xP, xQ, and xR of the points P, Q and R.
// Output: the coefficient A corresponding to the curve E_A: y^2=x^3+A*x^2+x.
f2elm_t t0, t1, one = {0};
fpcopy((digit_t*)&Montgomery_one, one[0]);
fp2add(xP, xQ, t1); // t1 = xP+xQ
fp2mul_mont(xP, xQ, t0); // t0 = xP*xQ
fp2mul_mont(xR, t1, A); // A = xR*t1
fp2add(t0, A, A); // A = A+t0
fp2mul_mont(t0, xR, t0); // t0 = t0*xR
fp2sub(A, one, A); // A = A-1
fp2add(t0, t0, t0); // t0 = t0+t0
fp2add(t1, xR, t1); // t1 = t1+xR
fp2add(t0, t0, t0); // t0 = t0+t0
fp2sqr_mont(A, A); // A = A^2
fp2inv_mont(t0); // t0 = 1/t0
fp2mul_mont(A, t0, A); // A = A*t0
fp2sub(A, t1, A); // Afinal = A-t1
}
void j_inv(const f2elm_t A, const f2elm_t C, f2elm_t jinv)
{ // Computes the j-invariant of a Montgomery curve with projective constant.
// Input: A,C in GF(p^2).
// Output: j=256*(A^2-3*C^2)^3/(C^4*(A^2-4*C^2)), which is the j-invariant of the Montgomery curve B*y^2=x^3+(A/C)*x^2+x or (equivalently) j-invariant of B'*y^2=C*x^3+A*x^2+C*x.
f2elm_t t0, t1;
fp2sqr_mont(A, jinv); // jinv = A^2
fp2sqr_mont(C, t1); // t1 = C^2
fp2add(t1, t1, t0); // t0 = t1+t1
fp2sub(jinv, t0, t0); // t0 = jinv-t0
fp2sub(t0, t1, t0); // t0 = t0-t1
fp2sub(t0, t1, jinv); // jinv = t0-t1
fp2sqr_mont(t1, t1); // t1 = t1^2
fp2mul_mont(jinv, t1, jinv); // jinv = jinv*t1
fp2add(t0, t0, t0); // t0 = t0+t0
fp2add(t0, t0, t0); // t0 = t0+t0
fp2sqr_mont(t0, t1); // t1 = t0^2
fp2mul_mont(t0, t1, t0); // t0 = t0*t1
fp2add(t0, t0, t0); // t0 = t0+t0
fp2add(t0, t0, t0); // t0 = t0+t0
fp2inv_mont(jinv); // jinv = 1/jinv
fp2mul_mont(jinv, t0, jinv); // jinv = t0*jinv
}
void xDBLADD(point_proj_t P, point_proj_t Q, const f2elm_t xPQ, const f2elm_t A24)
{ // Simultaneous doubling and differential addition.
// Input: projective Montgomery points P=(XP:ZP) and Q=(XQ:ZQ) such that xP=XP/ZP and xQ=XQ/ZQ, affine difference xPQ=x(P-Q) and Montgomery curve constant A24=(A+2)/4.
// Output: projective Montgomery points P <- 2*P = (X2P:Z2P) such that x(2P)=X2P/Z2P, and Q <- P+Q = (XQP:ZQP) such that = x(Q+P)=XQP/ZQP.
f2elm_t t0, t1, t2;
mp2_add(P->X, P->Z, t0); // t0 = XP+ZP
mp2_sub_p2(P->X, P->Z, t1); // t1 = XP-ZP
fp2sqr_mont(t0, P->X); // XP = (XP+ZP)^2
mp2_sub_p2(Q->X, Q->Z, t2); // t2 = XQ-ZQ
mp2_add(Q->X, Q->Z, Q->X); // XQ = XQ+ZQ
fp2mul_mont(t0, t2, t0); // t0 = (XP+ZP)*(XQ-ZQ)
fp2sqr_mont(t1, P->Z); // ZP = (XP-ZP)^2
fp2mul_mont(t1, Q->X, t1); // t1 = (XP-ZP)*(XQ+ZQ)
mp2_sub_p2(P->X, P->Z, t2); // t2 = (XP+ZP)^2-(XP-ZP)^2
fp2mul_mont(P->X, P->Z, P->X); // XP = (XP+ZP)^2*(XP-ZP)^2
fp2mul_mont(A24, t2, Q->X); // XQ = A24*[(XP+ZP)^2-(XP-ZP)^2]
mp2_sub_p2(t0, t1, Q->Z); // ZQ = (XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)
mp2_add(Q->X, P->Z, P->Z); // ZP = A24*[(XP+ZP)^2-(XP-ZP)^2]+(XP-ZP)^2
mp2_add(t0, t1, Q->X); // XQ = (XP+ZP)*(XQ-ZQ)+(XP-ZP)*(XQ+ZQ)
fp2mul_mont(P->Z, t2, P->Z); // ZP = [A24*[(XP+ZP)^2-(XP-ZP)^2]+(XP-ZP)^2]*[(XP+ZP)^2-(XP-ZP)^2]
fp2sqr_mont(Q->Z, Q->Z); // ZQ = [(XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)]^2
fp2sqr_mont(Q->X, Q->X); // XQ = [(XP+ZP)*(XQ-ZQ)+(XP-ZP)*(XQ+ZQ)]^2
fp2mul_mont(Q->Z, xPQ, Q->Z); // ZQ = xPQ*[(XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)]^2
}
static void swap_points(point_proj_t P, point_proj_t Q, const digit_t option)
{ // Swap points.
// If option = 0 then P <- P and Q <- Q, else if option = 0xFF...FF then P <- Q and Q <- P
digit_t temp;
unsigned int i;
for (i = 0; i < NWORDS_FIELD; i++) {
temp = option & (P->X[0][i] ^ Q->X[0][i]);
P->X[0][i] = temp ^ P->X[0][i];
Q->X[0][i] = temp ^ Q->X[0][i];
temp = option & (P->X[1][i] ^ Q->X[1][i]);
P->X[1][i] = temp ^ P->X[1][i];
Q->X[1][i] = temp ^ Q->X[1][i];
temp = option & (P->Z[0][i] ^ Q->Z[0][i]);
P->Z[0][i] = temp ^ P->Z[0][i];
Q->Z[0][i] = temp ^ Q->Z[0][i];
temp = option & (P->Z[1][i] ^ Q->Z[1][i]);
P->Z[1][i] = temp ^ P->Z[1][i];
Q->Z[1][i] = temp ^ Q->Z[1][i];
}
}
static void LADDER3PT(const f2elm_t xP, const f2elm_t xQ, const f2elm_t xPQ, const digit_t* m, const unsigned int AliceOrBob, point_proj_t R, const f2elm_t A)
{
point_proj_t R0 = {0}, R2 = {0};
f2elm_t A24 = {0};
digit_t mask;
int i, nbits, bit, swap, prevbit = 0;
if (AliceOrBob == ALICE) {
nbits = OALICE_BITS;
} else {
nbits = OBOB_BITS - 1;
}
// Initializing constant
fpcopy((digit_t*)&Montgomery_one, A24[0]);
mp2_add(A24, A24, A24);
mp2_add(A, A24, A24);
fp2div2(A24, A24);
fp2div2(A24, A24); // A24 = (A+2)/4
// Initializing points
fp2copy(xQ, R0->X);
fpcopy((digit_t*)&Montgomery_one, (digit_t*)R0->Z);
fp2copy(xPQ, R2->X);
fpcopy((digit_t*)&Montgomery_one, (digit_t*)R2->Z);
fp2copy(xP, R->X);
fpcopy((digit_t*)&Montgomery_one, (digit_t*)R->Z);
fpzero((digit_t*)(R->Z)[1]);
// Main loop
for (i = 0; i < nbits; i++) {
bit = (m[i >> LOG2RADIX] >> (i & (RADIX-1))) & 1;
swap = bit ^ prevbit;
prevbit = bit;
mask = 0 - (digit_t)swap;
swap_points(R, R2, mask);
xDBLADD(R0, R2, R->X, A24);
fp2mul_mont(R2->X, R->Z, R2->X);
}
swap = 0 ^ prevbit;
mask = 0 - (digit_t)swap;
swap_points(R, R2, mask);
}
#ifdef COMPRESS
static void CompletePoint(const point_proj_t P, point_full_proj_t R)
{ // Complete point on A = 0 curve
f2elm_t xz, s2, r2, yz, invz, t0, t1, one = {0};
fpcopy((digit_t*)&Montgomery_one, one[0]);
fp2mul_mont(P->X, P->Z, xz);
fpsub(P->X[0], P->Z[1], t0[0]);
fpadd(P->X[1], P->Z[0], t0[1]);
fpadd(P->X[0], P->Z[1], t1[0]);
fpsub(P->X[1], P->Z[0], t1[1]);
fp2mul_mont(t0, t1, s2);
fp2mul_mont(xz, s2, r2);
sqrt_Fp2(r2, yz);
fp2copy(P->Z,invz);
fp2inv_mont_bingcd(invz);
fp2mul_mont(P->X, invz, R->X);
fp2sqr_mont(invz, t0);
fp2mul_mont(yz, t0, R->Y);
fp2copy(one, R->Z);
}
void CompleteMPoint(const f2elm_t A, point_proj_t P, point_full_proj_t R)
{ // Given an xz-only representation on a montgomery curve, compute its affine representation
f2elm_t zero = {0}, one = {0}, xz, yz, s2, r2, invz, temp0, temp1;
fpcopy((digit_t*)&Montgomery_one, one[0]);
if (memcmp(P->Z[0], zero,NBITS_TO_NBYTES(NBITS_FIELD)) != 0 || memcmp(P->Z[1], zero, NBITS_TO_NBYTES(NBITS_FIELD)) != 0) {
fp2mul_mont(P->X, P->Z, xz); // xz = x*z;
fpsub(P->X[0], P->Z[1], temp0[0]);
fpadd(P->X[1], P->Z[0], temp0[1]);
fpadd(P->X[0], P->Z[1], temp1[0]);
fpsub(P->X[1], P->Z[0], temp1[1]);
fp2mul_mont(temp0, temp1, s2); // s2 = (x + i*z)*(x - i*z);
fp2mul_mont(A, xz, temp0);
fp2add(temp0, s2, temp1);
fp2mul_mont(xz, temp1, r2); // r2 = xz*(A*xz + s2);
sqrt_Fp2(r2, yz);
fp2copy(P->Z, invz);
fp2inv_mont_bingcd(invz);
fp2mul_mont(P->X, invz, R->X);
fp2sqr_mont(invz, temp0);
fp2mul_mont(yz, temp0, R->Y); // R = EM![x*invz, yz*invz^2];
fp2copy(one, R->Z);
} else {
fp2copy(zero, R->X);
fp2copy(one, R->Y);
fp2copy(zero, R->Z); // R = EM!0;
}
}
void Double(point_proj_t P, point_proj_t Q, f2elm_t A24, const int k)
{ // Doubling of a Montgomery point in projective coordinates (X:Z) over affine curve coefficient A.
// Input: projective Montgomery x-coordinates P = (X1:Z1), where x1=X1/Z1 and Montgomery curve constants (A+2)/4.
// Output: projective Montgomery x-coordinates Q = 2*P = (X2:Z2).
f2elm_t temp, a, b, c, aa, bb;
fp2copy(P->X, Q->X);
fp2copy(P->Z, Q->Z);
for (int j = 0; j < k; j++) {
fp2add(Q->X, Q->Z, a);
fp2sub(Q->X, Q->Z, b);
fp2sqr_mont(a, aa);
fp2sqr_mont(b, bb);
fp2sub(aa, bb, c);
fp2mul_mont(aa, bb, Q->X);
fp2mul_mont(A24, c, temp);
fp2add(temp, bb, temp);
fp2mul_mont(c, temp, Q->Z);
}
}
void xTPL_fast(const point_proj_t P, point_proj_t Q, const f2elm_t A2)
{ // Montgomery curve (E: y^2 = x^3 + A*x^2 + x) x-only tripling at a cost 5M + 6S + 9A = 27p + 61a.
// Input : projective Montgomery x-coordinates P = (X:Z), where x=X/Z and Montgomery curve constant A/2.
// Output: projective Montgomery x-coordinates Q = 3*P = (X3:Z3).
f2elm_t t1, t2, t3, t4;
fp2sqr_mont(P->X, t1); // t1 = x^2
fp2sqr_mont(P->Z, t2); // t2 = z^2
fp2add(t1, t2, t3); // t3 = t1 + t2
fp2add(P->X, P->Z, t4); // t4 = x + z
fp2sqr_mont(t4, t4); // t4 = t4^2
fp2sub(t4, t3, t4); // t4 = t4 - t3
fp2mul_mont(A2, t4, t4); // t4 = t4*A2
fp2add(t3, t4, t4); // t4 = t4 + t3
fp2sub(t1, t2, t3); // t3 = t1 - t2
fp2sqr_mont(t3, t3); // t3 = t3^2
fp2mul_mont(t1, t4, t1); // t1 = t1*t4
fp2shl(t1, 2, t1); // t1 = 4*t1
fp2sub(t1, t3, t1); // t1 = t1 - t3
fp2sqr_mont(t1, t1); // t1 = t1^2
fp2mul_mont(t2, t4, t2); // t2 = t2*t4
fp2shl(t2, 2, t2); // t2 = 4*t2
fp2sub(t2, t3, t2); // t2 = t2 - t3
fp2sqr_mont(t2, t2); // t2 = t2^2
fp2mul_mont(P->X, t2, Q->X); // x = x*t2
fp2mul_mont(P->Z, t1, Q->Z); // z = z*t1
}
void xTPLe_fast(point_proj_t P, point_proj_t Q, const f2elm_t A2, int e)
{ // Computes [3^e](X:Z) on Montgomery curve with projective constant via e repeated triplings. e triplings in E costs k*(5M + 6S + 9A)
// Input: projective Montgomery x-coordinates P = (X:Z), where x=X/Z, Montgomery curve constant A2 = A/2 and the number of triplings e.
// Output: projective Montgomery x-coordinates Q <- [3^e]P.
point_proj_t T;
copy_words((digit_t*)P, (digit_t*)T, 2*2*NWORDS_FIELD);
for (int j = 0; j < e; j++) {
xTPL_fast(T, T, A2);
}
copy_words((digit_t*)T, (digit_t*)Q, 2*2*NWORDS_FIELD);
}
void ADD(const point_full_proj_t P, const f2elm_t QX, const f2elm_t QY, const f2elm_t QZ, const f2elm_t A, point_full_proj_t R)
{ // General addition.
// Input: projective Montgomery points P=(XP:YP:ZP) and Q=(XQ:YQ:ZQ).
// Output: projective Montgomery point R <- P+Q = (XQP:YQP:ZQP).
f2elm_t t0 = {0}, t1 = {0}, t2 = {0}, t3 = {0}, t4 = {0}, t5 = {0}, t6 = {0}, t7 = {0};
fp2mul_mont(QX, P->Z, t0); // t0 = x2*Z1
fp2mul_mont(P->X, QZ, t1); // t1 = X1*z2
fp2add(t0, t1, t2); // t2 = t0 + t1
fp2sub(t1, t0, t3); // t3 = t1 - t0
fp2mul_mont(QX, P->X, t0); // t0 = x2*X1
fp2mul_mont(P->Z, QZ, t1); // t1 = Z1*z2
fp2add(t0, t1, t4); // t4 = t0 + t1
fp2mul_mont(t0, A, t0); // t0 = t0*A
fp2mul_mont(QY, P->Y, t5); // t5 = y2*Y1
fp2sub(t0, t5, t0); // t0 = t0 - t5
fp2mul_mont(t0, t1, t0); // t0 = t0*t1
fp2add(t0, t0, t0); // t0 = t0 + t0
fp2mul_mont(t2, t4, t5); // t5 = t2*t4
fp2add(t5, t0, t5); // t5 = t5 + t0
fp2sqr_mont(P->X, t0); // t0 = X1 ^ 2
fp2sqr_mont(P->Z, t6); // t6 = Z1 ^ 2
fp2add(t0, t6, t0); // t0 = t0 + t6
fp2add(t1, t1, t1); // t1 = t1 + t1
fp2mul_mont(QY, P->X, t7); // t7 = y2*X1
fp2mul_mont(QX, P->Y, t6); // t6 = x2*Y1
fp2sub(t7, t6, t7); // t7 = t7 - t6
fp2mul_mont(t1, t7, t1); // t1 = t1*t7
fp2mul_mont(A, t2, t7); // t7 = A*t2
fp2add(t7, t4, t4); // t4 = t4 + t7
fp2mul_mont(t1, t4, t4); // t4 = t1*t4
fp2mul_mont(QY, QZ, t1); // t1 = y2*z2
fp2mul_mont(t0, t1, t0); // t0 = t0*t1
fp2sqr_mont(QZ, t1); // t1 = z2 ^ 2
fp2sqr_mont(QX, t6); // t6 = x2 ^ 2
fp2add(t1, t6, t1); // t1 = t1 + t6
fp2mul_mont(P->Z, P->Y, t6); // t6 = Z1*Y1
fp2mul_mont(t1, t6, t1); // t1 = t1*t6
fp2sub(t0, t1, t0); // t0 = t0 - t1
fp2mul_mont(t2, t0, t0); // t0 = t2*t0
fp2mul_mont(t5, t3, R->X); // X3 = t5*t3
fp2add(t4, t0, R->Y); // Y3 = t4 + t0
fp2sqr_mont(t3, t0); // t0 = t3 ^ 2
fp2mul_mont(t3, t0, R->Z); // Z3 = t3*t0
}
void Mont_ladder(const f2elm_t x, const digit_t* m, point_proj_t P, point_proj_t Q, const f2elm_t A24, const unsigned int order_bits, const unsigned int order_fullbits)
{ // The Montgomery ladder
// Inputs: the affine x-coordinate of a point P on E: B*y^2=x^3+A*x^2+x,
// scalar m
// curve constant A24 = (A+2)/4
// order_bits = subgroup order bitlength
// order_fullbits = smallest multiple of 32 larger than the order bitlength
// Output: P = m*(x:1)
unsigned int bit = 0, owords = NBITS_TO_NWORDS(order_fullbits);
digit_t mask, scalar[NWORDS_ORDER];
int i;
// Initializing with the points (1:0) and (x:1)
fpcopy((digit_t*)&Montgomery_one, (digit_t*)P->X[0]);
fpzero(P->X[1]);
fp2zero(P->Z);
fp2copy(x, Q->X);
fpcopy((digit_t*)&Montgomery_one, (digit_t*)Q->Z[0]);
fpzero(Q->Z[1]);
for (i = NWORDS_ORDER-1; i >= 0; i--) {
scalar[i] = m[i];
}
for (i = order_fullbits-order_bits; i > 0; i--) {
mp_shiftl1(scalar, owords);
}
for (i = order_bits; i > 0; i--) {
bit = (unsigned int)(scalar[owords-1] >> (RADIX-1));
mp_shiftl1(scalar, owords);
mask = 0-(digit_t)bit;
swap_points(P, Q, mask);
xDBLADD(P, Q, x, A24); // If bit=0 then P <- 2*P and Q <- P+Q,
swap_points(P, Q, mask); // else if bit=1 then Q <- 2*Q and P <- P+Q
}
}
void mont_twodim_scalarmult(digit_t* a, const point_t R, const point_t S, const f2elm_t A, const f2elm_t A24, point_full_proj_t P, const unsigned int order_bits)
{ // Computes P = R + [a]S
point_proj_t P0 = {0}, P1 = {0};
point_full_proj_t P2 = {0};
f2elm_t one = {0};
fpcopy((digit_t*)&Montgomery_one, one[0]);
Mont_ladder(S->x, a, P0, P1, A24, order_bits, MAXBITS_ORDER);
recover_os(P0->X, P0->Z, P1->X, P1->Z, S->x, S->y, A, P2->X, P2->Y, P2->Z);
ADD(P2, R->x, R->y, one, A, P);
}
void xDBLADD_proj(point_proj_t P, point_proj_t Q, const f2elm_t XPQ, const f2elm_t ZPQ, const f2elm_t A24)
{ // Simultaneous doubling and differential addition.
// Input: projective Montgomery points P=(XP:ZP) and Q=(XQ:ZQ) such that xP=XP/ZP and xQ=XQ/ZQ, affine difference xPQ=x(P-Q) and Montgomery curve constant A24=(A+2)/4.
// Output: projective Montgomery points P <- 2*P = (X2P:Z2P) such that x(2P)=X2P/Z2P, and Q <- P+Q = (XQP:ZQP) such that = x(Q+P)=XQP/ZQP.
f2elm_t t0, t1, t2;
fp2add(P->X, P->Z, t0); // t0 = XP+ZP
fp2sub(P->X, P->Z, t1); // t1 = XP-ZP
fp2sqr_mont(t0, P->X); // XP = (XP+ZP)^2
fp2sub(Q->X, Q->Z, t2); // t2 = XQ-ZQ
fp2correction(t2);
fp2add(Q->X, Q->Z, Q->X); // XQ = XQ+ZQ
fp2mul_mont(t0, t2, t0); // t0 = (XP+ZP)*(XQ-ZQ)
fp2sqr_mont(t1, P->Z); // ZP = (XP-ZP)^2
fp2mul_mont(t1, Q->X, t1); // t1 = (XP-ZP)*(XQ+ZQ)
fp2sub(P->X, P->Z, t2); // t2 = (XP+ZP)^2-(XP-ZP)^2
fp2mul_mont(P->X, P->Z, P->X); // XP = (XP+ZP)^2*(XP-ZP)^2
fp2mul_mont(t2, A24, Q->X); // XQ = A24*[(XP+ZP)^2-(XP-ZP)^2]
fp2sub(t0, t1, Q->Z); // ZQ = (XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)
fp2add(Q->X, P->Z, P->Z); // ZP = A24*[(XP+ZP)^2-(XP-ZP)^2]+(XP-ZP)^2
fp2add(t0, t1, Q->X); // XQ = (XP+ZP)*(XQ-ZQ)+(XP-ZP)*(XQ+ZQ)
fp2mul_mont(P->Z, t2, P->Z); // ZP = [A24*[(XP+ZP)^2-(XP-ZP)^2]+(XP-ZP)^2]*[(XP+ZP)^2-(XP-ZP)^2]
fp2sqr_mont(Q->Z, Q->Z); // ZQ = [(XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)]^2
fp2sqr_mont(Q->X, Q->X); // XQ = [(XP+ZP)*(XQ-ZQ)+(XP-ZP)*(XQ+ZQ)]^2
fp2mul_mont(Q->X, ZPQ, Q->X); // XQ = ZPQ*[(XP+ZP)*(XQ-ZQ)+(XP-ZP)*(XQ+ZQ)]^2
fp2mul_mont(Q->Z, XPQ, Q->Z); // ZQ = XPQ*[(XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)]^2
}
void xDBL_e(const point_proj_t P, point_proj_t Q, const f2elm_t A24, const int e)
{ // Doubling of a Montgomery point in projective coordinates (X:Z) over affine curve coefficient A.
// Input: projective Montgomery x-coordinates P = (X1:Z1), where x1=X1/Z1 and Montgomery curve constants (A+2)/4.
// Output: projective Montgomery x-coordinates Q = 2*P = (X2:Z2).
f2elm_t temp, a, b, c, aa, bb;
fp2copy(P->X,Q->X);
fp2copy(P->Z,Q->Z);
for (int j = 0; j < e; j++) {
fp2add(Q->X, Q->Z, a); // a = xQ + zQ
fp2sub(Q->X, Q->Z, b); // b = xQ - zQ
fp2sqr_mont(a, aa); //aa = (xQ + zQ)^2
fp2sqr_mont(b, bb); //bb = (xQ - zQ)^2
fp2sub(aa, bb, c); // c = (xQ + zQ)^2 - (xQ - zQ)^2
fp2mul_mont(aa, bb, Q->X); // xQ = (xQ + zQ)^2 * (xQ - zQ)^2
fp2mul_mont(A24, c, temp); // temp = A24 * ((xQ + zQ)^2 - (xQ - zQ)^2)
fp2add(temp, bb, temp); // temp = A24 * ((xQ + zQ)^2 - (xQ - zQ)^2) + (xQ - zQ)^2
fp2mul_mont(c, temp, Q->Z); // temp = (A24 * ((xQ + zQ)^2 - (xQ - zQ)^2) + (xQ - zQ)^2) * ((xQ + zQ)^2 - (xQ - zQ)^2)
}
}
void Ladder(const point_proj_t P, const digit_t* m, const f2elm_t A, const unsigned int order_bits, point_proj_t R)
{
point_proj_t R0, R1;
f2elm_t A24 = {0};
unsigned int bit = 0;
digit_t mask;
int j, swap, prevbit = 0;
fpcopy((digit_t*)&Montgomery_one, A24[0]);
fpadd(A24[0], A24[0], A24[0]);
fp2add(A, A24, A24);
fp2div2(A24, A24);
fp2div2(A24, A24); // A24 = (A+2)/4
j = order_bits - 1;
bit = (m[j >> LOG2RADIX] >> (j & (RADIX-1))) & 1;
while (bit == 0) {
j--;
bit = (m[j >> LOG2RADIX] >> (j & (RADIX-1))) & 1;
}
// R0 <- P, R1 <- 2P
fp2copy(P->X, R0->X);
fp2copy(P->Z, R0->Z);
xDBL_e(P, R1, A24, 1);
// Main loop
for (int i = j - 1; i >= 0; i--) {
bit = (m[i >> LOG2RADIX] >> (i & (RADIX-1))) & 1;
swap = bit ^ prevbit;
prevbit = bit;
mask = 0 - (digit_t)swap;
swap_points(R0, R1, mask);
xDBLADD_proj(R0, R1, P->X, P->Z, A24);
}
swap = 0 ^ prevbit;
mask = 0 - (digit_t)swap;
swap_points(R0, R1, mask);
fp2copy(R0->X, R->X);
fp2copy(R0->Z, R->Z);
}
#endif