-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
143 lines (114 loc) · 5.75 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from scipy.interpolate import make_interp_spline
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, Dataset
def dataset_noniid(DATASETS, NUM_USERS, SHARDS):
NUM_SHARDS, NUM_IMAGES = int(NUM_USERS * SHARDS), (len(DATASETS)//(NUM_USERS * SHARDS)) # 40, 1250
IDX_SHARD = [i for i in range(NUM_SHARDS)]
DIC_USERS = {i: np.array([]) for i in range(NUM_USERS)}
IDXS = np.arange(NUM_SHARDS * NUM_IMAGES)
LABELS = np.array(DATASETS.targets)
IDXS_LABELS = np.vstack((IDXS, LABELS))
IDXS_LABELS = IDXS_LABELS[:, IDXS_LABELS[1, :].argsort()]
IDXS = IDXS_LABELS[0, :]
for i in range(NUM_USERS):
rand_set = set(np.random.choice(IDX_SHARD, SHARDS, replace=False))
IDX_SHARD = list(set(IDX_SHARD) - rand_set)
for rand in rand_set:
DIC_USERS[i] = np.concatenate((DIC_USERS[i], IDXS[rand * NUM_IMAGES:(rand + 1) * NUM_IMAGES]), axis=0)
return DIC_USERS
def get_dataset_mnist(NUM_USERS, DIR, SHARDS):
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0.1307,), std=(0.3081,)),
])
train_dataset = datasets.MNIST(DIR, train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(DIR, train=False, download=True, transform=transform)
user_group = dataset_noniid(train_dataset, NUM_USERS, SHARDS)
return train_dataset, test_dataset, user_group
def get_dataset_cifar10(NUM_USERS, DIR, SHARDS):
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
train_dataset = datasets.CIFAR10(root=DIR, train=True, download=True, transform=transform)
test_dataset = datasets.CIFAR10(root=DIR, train=False, download=True, transform=transform)
user_group = dataset_noniid(train_dataset, NUM_USERS, SHARDS)
return train_dataset, test_dataset, user_group
class DatasetProvider(Dataset):
def __init__(self, dataset, idxs):
self.dataset = dataset
self.idxs = [int(i) for i in idxs]
def __len__(self):
return len(self.idxs)
def __getitem__(self, item):
data, label = self.dataset[self.idxs[item]]
return torch.tensor(data), torch.tensor(label)
def model_size_calculator(model):
param_size = 0
for key in model.state_dict().keys():
if any(sub in key for sub in ['Local', 'SubGlobal', 'Global', 'conn']):
if 'weight' in key:
a = np.shape(model.state_dict()[key])
param_size += np.prod(a)
param_size *= 4
ours = param_size / 1024**2
param_size = 0
for key in model.state_dict().keys():
if 'weight' in key:
a = np.shape(model.state_dict()[key])
param_size += np.prod(a)
param_size *= 4
origin = param_size / 1024**2
print('\n*** The size of params in the baseline DNN model (i.e., communication cost): {:.3f}MB'.format(origin-ours))
print('*** The size of params in our modules (i.e., communication cost) : {:.3f}MB'.format(ours))
print('*** Communication efficiency {:.2f} times better'.format(origin/ours))
def TB_CLI_logger(local_acc_test_avg, local_acc_test_avg_global, local_losses_avg, local_train_T_avg, PRINT_LOG_INTERVAL, TB_WRITER, MODEL_NAME, round_idx, TB_log_flag):
if TB_log_flag:
TB_WRITER.add_scalar(MODEL_NAME + ': Local Accuracy Test' , local_acc_test_avg, round_idx+1)
TB_WRITER.add_scalar(MODEL_NAME + ': Local Accuracy Test Global' , local_acc_test_avg_global, round_idx+1)
TB_WRITER.add_scalar(MODEL_NAME + ': Local Loss' , local_losses_avg, round_idx+1)
TB_WRITER.add_scalar(MODEL_NAME + ': Local Train T ' , local_train_T_avg, round_idx+1)
TB_WRITER.close()
### Print log each 'N'-epoch
if (round_idx+1) % PRINT_LOG_INTERVAL == 0:
print('\n--| Avg Training Stats after ', round_idx,'global rounds: |--')
print('Local Training Loss : {:.6f}'.format(local_losses_avg))
print('Local Training Accuracy Test : {:.2f}%'.format(100*local_acc_test_avg))
print('Local Training Time : {:.8f}\n'.format(local_train_T_avg))
def result_plot(train_loss, train_acc_test_local, train_acc_test_global):
spline = make_interp_spline(np.arange(0, 50, 1), train_loss)
X_ = np.linspace(0, 50, 200)
train_loss_sp = spline(X_)
plt.rcParams["figure.figsize"] = (13, 5)
plt.rcParams["axes.titlesize"] = 10
plt.subplot(1, 2, 1)
plt.title('Loss', fontsize=25)
plt.xlabel('Round', fontsize=25)
plt.ylabel('Value', fontsize=25)
plt.xticks(np.arange(0, 51, 5), fontsize=20)
plt.yticks(np.arange(0, 1.1, 0.1), fontsize=20)
plt.xlim(0, 50)
plt.ylim(0, 1)
plt.plot(train_loss_sp, label='Loss')
plt.legend(loc='upper right', fontsize=15)
spline = make_interp_spline(np.arange(0, 50, 1), train_acc_test_local)
X_ = np.linspace(0, 50, 100)
train_acc_test_local_sp = spline(X_)
spline = make_interp_spline(np.arange(0, 50, 1), train_acc_test_global)
X_ = np.linspace(0, 50, 100)
train_acc_test_global_sp = spline(X_)
plt.subplot(1, 2, 2)
plt.title('Local Accuracy', fontsize=25)
plt.xlabel('Round', fontsize=25)
plt.ylabel('Accuracy (%)', fontsize=25)
plt.xticks(np.arange(0, 51, 5), fontsize=15)
plt.yticks(np.arange(0, 1.1, 0.1), fontsize=15)
plt.xlim(0, 50)
plt.ylim(0, 1)
plt.plot(train_acc_test_global_sp, label='Global')
plt.plot(train_acc_test_local_sp, label='Local')
plt.legend(loc='upper right', fontsize=15)
plt.show()