-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassify and predicting.py
40 lines (29 loc) · 1.51 KB
/
classify and predicting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
iris_dataset = load_iris()
print("Target names: {}".format(iris_dataset['target_names']))
print("Feature names: {}".format(iris_dataset['feature_names']))
print("Type of data: {}".format(type(iris_dataset['data'])))
print("Shape of data: {}".format(iris_dataset['data'].shape))
print("Type of target: {}".format(type(iris_dataset['target'])))
print("Shape of target: {}".format(iris_dataset['target'].shape))
print("Target:\n{}".format(iris_dataset['target']))
X_train, X_test, y_train, y_test = train_test_split(iris_dataset['data'], iris_dataset['target'], random_state=0)
print("X_train shape: {}".format(X_train.shape))
print("y_train shape: {}".format(y_train.shape))
# Same for the test samples
print("X_test shape: {}".format(X_test.shape))
print("y_test shape: {}".format(y_test.shape))
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train, y_train)
X_new = np.array([[5, 2.9, 1, 0.2]])
print("X_new.shape: {}".format(X_new.shape))
prediction = knn.predict(X_new)
print("Prediction: {}".format(prediction))
print("Predicted target name: {}".format(iris_dataset['target_names'][prediction]))
y_pred = knn.predict(X_test)
print("Test set predictions:\n {}".format(y_pred))
print("Test set score (np.mean): {:.2f}".format(np.mean(y_pred == y_test)))
print("Test set score (knn.score): {:.2f}".format(knn.score(X_test, y_test)))