-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
116 lines (85 loc) · 3.43 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os, json, argparse, torch, logging, warnings, sys
from torch.utils.data import DataLoader
from model import MultiTaskModel
from utils.data import CorpusNLI, CorpusQA
from utils.datapath import get_loc
from utils.utils import evaluateNLI, evaluateQA
from utils.logger import Logger
from utils.seed import seed_everything
logging.getLogger("transformers.tokenization_utils").setLevel(logging.ERROR)
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser()
parser.add_argument("--dropout", type=float, default=0.1, help="")
parser.add_argument("--hidden_dims", type=int, default=768, help="")
parser.add_argument(
"--model_name",
type=str,
default="xlm-roberta-base",
help="name of the pretrained model",
)
parser.add_argument(
"--local_model", action="store_true", help="use local pretrained model"
)
parser.add_argument("--sc_labels", type=int, default=3, help="")
parser.add_argument("--qa_labels", type=int, default=2, help="")
parser.add_argument("--sc_batch_size", type=int, default=32, help="batch size")
parser.add_argument("--qa_batch_size", type=int, default=8, help="batch size")
parser.add_argument("--seed", type=int, default=63, help="seed for numpy and pytorch")
parser.add_argument("--data_dir", type=str, default="data/", help="directory of data")
parser.add_argument("--save", type=str, default="saved/", help="")
parser.add_argument("--load", type=str, default="", help="")
parser.add_argument("--log_file", type=str, default="zeroshot_logs.txt", help="")
parser.add_argument("--grad_clip", type=float, default=1.0)
parser.add_argument("--task", type=str, default="sc_fa")
args = parser.parse_args()
print(args)
seed_everything(args.seed)
if not os.path.exists(args.save):
os.makedirs(args.save)
sys.stdout = Logger(os.path.join(args.save, args.log_file))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_data(task_lang):
[task,] = task_lang.split("_")
if task == "sc":
test_corpus = CorpusNLI(
get_loc("test", task_lang, args.data_dir),
model_name=args.model_name,
local_files_only=args.local_model,
)
batch_size = args.sc_batch_size
elif task == "qa":
test_corpus = CorpusQA(
get_loc("test", task_lang, args.data_dir),
evaluate=True,
model_name=args.model_name,
local_files_only=args.local_model,
)
batch_size = args.qa_batch_size
return test_corpus, batch_size
test_corpus, batch_size = load_data(args.task)
test_dataloader = DataLoader(
test_corpus, batch_size=batch_size, pin_memory=True, drop_last=True
)
# Model
if args.load != "":
print(f"loading model {args.load}...")
model = torch.load(args.load)
else:
model = MultiTaskModel(args).to(device)
def test():
model.eval()
if "sc" in args.task:
test_loss, test_acc, matrix = evaluateNLI(
model, test_dataloader, device, return_matrix=True
)
print("test_loss {:10.8f} test_acc {:6.4f}".format(test_loss, test_acc))
print("confusion matrix:\n", matrix)
elif "qa" in args.task:
result = evaluateQA(model, test_corpus, "test_" + args.task, args.save)
print("test_f1 {:10.8f}".format(result["f1"]))
with open(os.path.join(args.save, "test.json"), "w") as outfile:
json.dump(result, outfile)
test_loss = -result["f1"]
return test_loss
if __name__ == "__main__":
test()