-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtest_E2ECNN.py
77 lines (58 loc) · 2.87 KB
/
test_E2ECNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
########
# 'test_E2ECNN.py' tests the trained convolutional neural network
# for video reconstruction in 'coded aperture compressive temporal imaging (CACTI)'
# Reference
# [1] M. Qiao, Z. Meng, J. Ma, X. Yuan, Deep learning for video compressive
# sensing, APL Photonics 5, 030801 (2020).
# [2] Yuan, Xin. "Generalized alternating projection based total variation minimization for compressive sensing."
# 2016 IEEE International Conference on Image Processing (ICIP). IEEE, 2016.
# Contact
# Xin Yuan, Bell Labs, xyuan@bell-labs.com
# Mu Qiao, New Jersey Institute of Technology, muqiao@njit.edu
# Update Mar 13, 2020.
# Test steps
# [0] Specify 'test_data_name' in line 42 as 'waterBalloon', 'hand', 'duomino', or 'pendulumBall', as found in the file 'dataset'
# [1] Specify 'Cr' (compression ratio) in line 41 as 10, 20 or 30
# [2] Run the code
# [3] Results will be stored in 'E2E_CNN_algorithm/Result/Validation-Result'
# Environment requirement
# [0] Tensorflow-gpu==1.13.1 (conda install tensorflow-gpu=1.13.1)
# [1] Packages: numpy, yaml, scipy, hdf5storage, matplotlib, math
########
from __future__ import absolute_import
import tensorflow as tf
import yaml
import os
import h5py
from E2E_CNN.Model.Decoder_Handler import Decoder_Handler
config_filename = './E2E_CNN/Model/Config.yaml'
def main():
Cr = 10
test_data_name = 'waterBalloon'
if Cr ==10:
ave_folder,ave_config = 'Cr10_model','config_Cr10_model.yaml'
elif Cr ==20:
ave_folder,ave_config = 'Cr20_model','config_Cr20_model.yaml'
else:
ave_folder,ave_config = 'Cr30_model','config_Cr30_model.yaml'
folder_id,config_id = ave_folder,ave_config
with open(config_filename) as handle:
model_config = yaml.load(handle,Loader=yaml.FullLoader)
data_name = []
data_name.append(os.path.join(os.path.abspath('.'), model_config['category'], model_config['data_name']))
data_name.append(os.path.join(os.path.abspath('.'), model_config['category_valid'], model_config['data_name']))
data_name.append(os.path.join(os.path.abspath('.'), 'dataset', 'meas_'+test_data_name))
log_dir = os.path.join(os.path.abspath('.'),model_config['result_dir'],model_config['result_model'],folder_id)
with open(os.path.join(log_dir, config_id)) as handle:
model_config = yaml.load(handle,Loader=yaml.FullLoader)
mask_name = os.path.join(os.path.abspath('.'), 'dataset','mask')
dataset_name = (data_name,mask_name)
tf_config = tf.ConfigProto()
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
tf_config = tf.ConfigProto()
tf_config.gpu_options.allow_growth = True
with tf.Session(config=tf_config) as sess:
Cube_Decoder = Decoder_Handler(dataset_name=dataset_name, model_config=model_config, sess = sess, is_training=False, Cr=Cr)
Cube_Decoder.test(test_data_name)
if __name__ == '__main__':
main()