-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtest_FFDNet_denoising.m
81 lines (60 loc) · 2.76 KB
/
test_FFDNet_denoising.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
% 'test_FFDNet_denoising.m' performs frame-wise denoising on video reconstructions from other algorithms (GAP-TV, DeSCI or PnP)
% using deep denosing FFDNet
% Reference
% [1] M. Qiao, Z. Meng, J. Ma, X. Yuan, Deep learning for video compressive
% sensing, APL Photonics 5, 030801 (2020).
% [2] Wang, X., & Chan, S. H. (2017, March). Parameter-free plug-and-play ADMM for image restoration.
% In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1323-1327). IEEE.
% Contact
% Xin Yuan, Bell Labs, xyuan@bell-labs.com
% Mu Qiao, New Jersey Institute of Technology, muqiao@njit.edu
% Update Mar 13, 2020.
% For environment requirements, refer to 'https://github.com/cszn/FFDNet'
%% [0] environment configuration
clear;
clc;
close all
addpath(genpath('./PnP_algorithm/funs'));
addpath(fullfile('./PnP_algorithm/FFDNet-master/utilities'));
addpath('./PnP_algorithm\matconvnet-1.0-beta25\matlab\simplenn');
addpath(genpath('.\PnP_algorithm/FFD_net_model'));
load(fullfile('.\PnP_algorithm/FFD_net_model','FFDNet_gray.mat'));
net = vl_simplenn_move(vl_simplenn_tidy(net), 'gpu');
datasetdir = './dataset'; % dataset dictionary
para.dataname = 'recon_gaptv_waterBalloon_cr_10'; % select a reconstructed video
para.cr = str2double(para.dataname(end-1:end)); % compression ratio
datapath = sprintf('%s/%s.mat',datasetdir,para.dataname); % path of the selected file
noise_est = 50/255; % noise level estimate
%% [1] load noisy video reconstruction
load(datapath);
para.numRec = size(recon,3)/para.cr;
%% [2] perform denoising
recon_gaptv = recon; clear recon;
recon_denoise = zeros(size(recon_gaptv));
for ncc = 1:numRec*para.cr
recon_denoise(:,:,ncc) = FFD_Net_DenoiserGPU(single(recon_gaptv(:,:,ncc)), noise_est,net);
end
%% [3] show results in figure
% [3.0] rotate and crop 'recon_denoise'
recon_denoise_rotate = zeros(725,725,para.numRec*para.cr);
for np=1:para.numRec*para.cr
recon_denoise_rotate(:,:,np) = imrotate(recon_denoise(:,:,np),-135);
end
recon_denoise_rotate = recon_denoise_rotate(182:182+363,182:182+363,:);
recon_denoise_rotate = recon_denoise_rotate/max(recon_denoise_rotate(:));
% [3.1] rotate and crop 'recon_gaptv'
recon_gaptv_rotate = zeros(725,725,para.numRec*para.cr);
for np=1:para.numRec*para.cr
recon_gaptv_rotate(:,:,np) = imrotate(recon_gaptv(:,:,np),-135);
end
recon_gaptv_rotate = recon_gaptv_rotate(182:182+363,182:182+363,:);
recon_gaptv_rotate = recon_gaptv_rotate/max(recon_gaptv_rotate(:));
% [3.2] compare results
figure;
for i=1:para.numRec*para.cr
subplot(1,2,1);
imshow(recon_gaptv_rotate(:,:,i));
subplot(1,2,2);
imshow(recon_denoise_rotate(:,:,i));
pause(0.2);
end