forked from graemeg/epiktimer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathepiktimerbase.pas
421 lines (352 loc) · 13.4 KB
/
epiktimerbase.pas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
unit EpikTimerBase;
{$IFDEF FPC}
{$MODE DELPHI}{$H+}
{$ENDIF}
interface
uses
{$IFDEF Windows}
Windows, MMSystem,
{$ELSE}
unix,
// unixutil,
baseunix ,
{$ENDIF}
EpikTimer,
Classes, SysUtils;
//function newGetTickCount: Cardinal;
function GetTicks: TickType;
function GetTicksFrequency: TickType;
procedure InitTimebases(var HWCapabilityDataAvailable,
HWTickSupportAvailable,
MicrosecondSystemClockAvailable : Boolean;
var TimebaseData : TimebaseData;
var StartupCorrelationSample, UpdatedCorrelationSample: TimebaseCorrelationData);
procedure CorrelateTimebases(HWtickSupportAvailable, MicrosecondSystemClockAvailable: Boolean;
var TimebaseData : TimebaseData;
var StartupCorrelationSample, UpdatedCorrelationSample: TimebaseCorrelationData);
function GetTimebaseCorrelation(HWtickSupportAvailable: Boolean; var StartupCorrelationSample, UpdatedCorrelationSample: TimebaseCorrelationData): TickType;
function CalibrateTickFrequency(var TimeBase: TimebaseData): Integer;
function CalibrateCallOverheads(var TimeBase: TimebaseData): Integer;
procedure GetCorrelationSample(var CorrelationData: TimeBaseCorrelationData);
function SystemSleep(Milliseconds: Integer): integer;
implementation
Type
TpTimeSpec = ^Ttimespec;
var
EpikTimerBaseStartupCorrelationSample: TimebaseCorrelationData; // Starting ticks correlation snapshot
EpikTimerBaseUpdatedCorrelationSample: TimebaseCorrelationData;
EpikTimerBaseTimebaseData: TimebaseData; // The hardware timebase
// EpikTimerBaseTimebaseCalibrationParameters: TimebaseCalibrationParameters; // Calibration data for this timebase
EpikTimerBaseHWCapabilityDataAvailable: Boolean; // True if hardware tick support is available
EpikTimerBaseHWTickSupportAvailable: Boolean; // True if hardware tick support is available
EpikTimerBaseMicrosecondSystemClockAvailable:Boolean; // true if system has microsecond clock
{$IFDEF CPUI386}
{ Some references for this section can be found at:
http://www.sandpile.org/ia32/cpuid.htm
http://www.sandpile.org/ia32/opc_2.htm
http://www.sandpile.org/ia32/msr.htm
}
// Pentium specific... push and pop the flags and check for CPUID availability
function HasHardwareCapabilityData: Boolean;
begin
asm
PUSHFD
POP EAX
MOV EDX,EAX
XOR EAX,$200000
PUSH EAX
POPFD
PUSHFD
POP EAX
XOR EAX,EDX
JZ @EXIT
MOV AL,TRUE
@EXIT:
end;
end;
function HasHardwareTickCounter: Boolean;
var FeatureFlags: Longword;
begin
FeatureFlags:=0;
asm
PUSH EBX
XOR EAX,EAX
DW $A20F
POP EBX
CMP EAX,1
JL @EXIT
XOR EAX,EAX
MOV EAX,1
PUSH EBX
DW $A20F
MOV FEATUREFLAGS,EDX
POP EBX
@EXIT:
end;
Result := (FeatureFlags and $10) <> 0;
end;
// Execute the Pentium's RDTSC instruction to access the counter value.
function HardwareTicks: TickType; assembler; asm DW 0310FH end;
(* * * * * * * * End of i386 Hardware specific code * * * * * * *)
// These are here for architectures that don't have a precision hardware
// timing source. They'll return zeros for overhead values. The timers
// will work but there won't be any error compensation for long
// term accuracy.
{$ELSE} // add other architectures and hardware specific tick sources here
function HasHardwareCapabilityData: Boolean; begin Result:=False end;
function HasHardwareTickCounter: Boolean; begin Result:=false end;
function HardwareTicks:TickType; begin result:=0 end;
{$ENDIF}
function clock_gettime(monolitic: Integer; ts: TpTimeSpec): Integer;
begin
Result := 0;
end;
function GetHardwareTicks: TickType;
const
CLOCK_MONOTONIC = 1;
NanoPerSec = 1000000000;
var
ts: TTimeSpec;
begin
clock_gettime(CLOCK_MONOTONIC, @ts);
Result := ts.tv_sec;
Result := (Result*NanoPerSec) + ts.tv_nsec;
end;
function GetTicks: TickType;
begin
Result := EpikTimerBaseTimebaseData.Ticks;
end;
function GetTicksFrequency: TickType;
begin
Result := EpikTimerBaseTimebaseData.TicksFrequency;
end;
{ Experimental, no idea if this works or is implemented correctly }
function newGetTickCount: Cardinal;
const
CLOCK_MONOTONIC = 1;
NanoPerMilli = 1000000;
MilliPerSec = 1000;
var
ts: TTimeSpec;
i: TickType;
t: timeval;
begin
// use the Posix clock_gettime() call
if clock_gettime(CLOCK_MONOTONIC, @ts)=0 then
begin
// Use the FPC fallback
fpgettimeofday(@t,nil);
// Build a 64 bit microsecond tick from the seconds and microsecond longints
Result := (TickType(t.tv_sec) * NanoPerMilli) + t.tv_usec;
Exit;
end;
i := ts.tv_sec;
i := (i*MilliPerSec) + ts.tv_nsec div NanoPerMilli;
Result := i;
end;
function SystemSleep(Milliseconds: Integer): integer;
{$IFDEF Windows}
begin
Sleep(Milliseconds);
Result := 0;
end;
{$ELSE}
{$IFDEF CPUX86_64}
begin
Sleep(Milliseconds);
Result := 0;
end;
{$ELSE}
var
timerequested, timeremaining: timespec;
begin
// This is not a very accurate or stable gating source... but it's the
// only one that's available for making short term measurements.
timerequested.tv_sec:=Milliseconds div 1000;
timerequested.tv_nsec:=(Milliseconds mod 1000) * 1000000;
Result := fpnanosleep(@timerequested, @timeremaining) // returns 0 if ok
end;
{$ENDIF}
{$ENDIF}
function NullHardwareTicks:TickType; begin Result:=0 end;
(* * * * * * * * * * Timebase calibration section * * * * * * * * * *)
// Grab a snapshot of the system and hardware tick sources... as quickly as
// possible and with overhead compensation. These samples will be used to
// correct the accuracy of the hardware tick frequency source when precision
// long term measurements are desired.
procedure GetCorrelationSample(var CorrelationData: TimeBaseCorrelationData);
Var
TicksHW, TicksSys: TickType;
THW, TSYS: TickCallFunc;
begin
THW:=EpikTimerBaseTimebaseData.Ticks; TSYS:=EpikTimerBaseTimebaseData.Ticks;
TicksHW:=THW(); TicksSys:=TSYS();
With CorrelationData do
Begin
SystemTicks:= TicksSys - EpikTimerBaseTimebaseData.TicksOverhead(*-FSystemTicks.TicksOverhead*) ;
HWTicks:=TicksHW-EpikTimerBaseTimebaseData.TicksOverhead;
End
end;
// Set up compensation for call overhead to the Ticks and SystemSleep functions.
// The Timebase record contains Calibration parameters to be used for each
// timebase source. These have to be unique as the output of this measurement
// is measured in "ticks"... which are different periods for each timebase.
function CalibrateCallOverheads(var TimeBase: TimebaseData): Integer;
var i:Integer; St,Fin,Total:TickType;
begin
with Timebase, Timebase.CalibrationParms do
begin
Total:=0; Result:=1;
for I:=1 to TicksIterations do // First get the base tick getting overhead
begin
St:=Ticks(); Fin:=Ticks();
Total:=Total+(Fin-St); // dump the first sample
end;
TicksOverhead:=Total div TicksIterations;
Total:=0;
For I:=1 to SleepIterations do
Begin
St:=Ticks();
if SystemSleep(0)<>0 then exit;
Fin:=Ticks();
Total:=Total+((Fin-St)-TicksOverhead);
End;
SleepOverhead:=Total div SleepIterations;
OverheadCalibrated:=True; Result:=0
End
end;
// CalibrateTickFrequency is a fallback in case a microsecond resolution system
// clock isn't found. It's still important because the long term accuracy of the
// timers will depend on the determination of the tick frequency... in other words,
// the number of ticks it takes to make a second. If this measurement isn't
// accurate, the counters will proportionately drift over time.
//
// The technique used here is to gate a sample of the tick stream with a known
// time reference which, in this case, is nanosleep. There is a *lot* of jitter
// in a nanosleep call so an attempt is made to compensate for some of it here.
function CalibrateTickFrequency(var TimeBase: TimebaseData): Integer;
var
i: Integer;
Total, SS, SE: TickType;
ElapsedTicks, SampleTime: Extended;
begin
With Timebase, Timebase.CalibrationParms do
Begin
Result:=1; //maintain unitialized default in case something goes wrong.
Total:=0;
For i:=1 to FreqIterations do
begin
SS:=Ticks();
SystemSleep(FrequencyGateTimeMS);
SE:=Ticks();
Total:=Total+((SE-SS)-(SleepOverhead+TicksOverhead))
End;
//doing the floating point conversion allows SampleTime parms of < 1 second
ElapsedTicks:=Total div FreqIterations;
SampleTime:=FrequencyGateTimeMS;
TicksFrequency:=Trunc( ElapsedTicks / (SampleTime / 1000));
FreqCalibrated:=True;
end;
end;
(* * * * * * * * * * Timebase correlation section * * * * * * * * * *)
{ Get another snapshot of the system and hardware tick sources and compute a
corrected value for the hardware frequency. In a short amount of time, the
microsecond system clock accumulates enough ticks to perform a *very*
accurate frequency measurement of the typically picosecond time stamp counter. }
function GetTimebaseCorrelation(HWtickSupportAvailable: Boolean; var StartupCorrelationSample, UpdatedCorrelationSample: TimebaseCorrelationData): TickType;
Var
HWDiff, SysDiff, Corrected: Extended;
begin
If HWtickSupportAvailable then
Begin
GetCorrelationSample(UpdatedCorrelationSample);
HWDiff:=UpdatedCorrelationSample.HWTicks-StartupCorrelationSample.HWTicks;
SysDiff:=UpdatedCorrelationSample.SystemTicks-StartupCorrelationSample.SystemTicks;
Corrected:=HWDiff / (SysDiff / DefaultSystemTicksPerSecond);
Result:=trunc(Corrected)
End
else result:=0
end;
{ If an accurate reference is available, update the TicksFrequency of the
hardware timebase. }
procedure CorrelateTimebases(HWtickSupportAvailable, MicrosecondSystemClockAvailable: Boolean;
var TimebaseData : TimebaseData;
var StartupCorrelationSample, UpdatedCorrelationSample: TimebaseCorrelationData);
begin
If MicrosecondSystemClockAvailable and HWTickSupportAvailable then
TimebaseData.TicksFrequency:=GetTimebaseCorrelation(HWtickSupportAvailable, StartupCorrelationSample, UpdatedCorrelationSample);
end;
procedure InitTimebases(var HWCapabilityDataAvailable,
HWTickSupportAvailable,
MicrosecondSystemClockAvailable : Boolean;
var TimebaseData : TimebaseData;
var StartupCorrelationSample, UpdatedCorrelationSample: TimebaseCorrelationData);
Begin
{ Tick frequency rates are different for the system and HW timebases so we
need to store calibration data in the period format of each one. }
With TimebaseData.CalibrationParms do
Begin
FreqCalibrated:=False;
OverheadCalibrated:=False;
TicksIterations:=5;
SleepIterations:=10;
FrequencyGateTimeMS:=100;
FreqIterations:=1;
End;
// Initialize the HW tick source data
HWCapabilityDataAvailable:=False;
HWTickSupportAvailable:=False;
TimebaseData.Ticks:=@NullHardwareTicks; // returns a zero if no HW support
TimebaseData.TicksFrequency:=1;
With TimebaseData.CalibrationParms do
Begin
FreqCalibrated:=False;
OverheadCalibrated:=False;
TicksIterations:=10;
SleepIterations:=20;
FrequencyGateTimeMS:=150;
FreqIterations:=1;
End;
if HasHardwareCapabilityData then
Begin
HWCapabilityDataAvailable:=True;
If HasHardwareTickCounter then
Begin
TimebaseData.Ticks:=@HardwareTicks;
HWTickSupportAvailable:=CalibrateCallOverheads(TimebaseData)=0
End
end;
CalibrateCallOverheads(TimebaseData);
CalibrateTickFrequency(TimebaseData);
// Overheads are set... get starting timestamps for long term calibration runs
GetCorrelationSample(StartupCorrelationSample);
With TimeBaseData do
If (TicksFrequency>(DefaultSystemTicksPerSecond-SystemTicksNormalRangeLimit)) and
(TicksFrequency<(DefaultSystemTicksPerSecond+SystemTicksNormalRangeLimit)) then
Begin // We've got a good microsecond system clock
TimeBaseData.TicksFrequency:=DefaultSystemTicksPerSecond; // assume it's pure
MicrosecondSystemClockAvailable:=True;
If HWTickSupportAvailable then
Begin
SystemSleep(TimebaseData.CalibrationParms.FrequencyGateTimeMS); // rough gate
CorrelateTimebases(HWCapabilityDataAvailable, MicrosecondSystemClockAvailable,
TimebaseData, StartupCorrelationSample, UpdatedCorrelationSample);
End
end
else
Begin
MicrosecondSystemClockAvailable:=False;
If HWTickSupportAvailable then
CalibrateTickFrequency(TimebaseData) // sloppy but usable fallback calibration
End;
End;
initialization
begin
InitTimebases(EpikTimerBaseHWCapabilityDataAvailable,
EpikTimerBaseHWTickSupportAvailable,
EpikTimerBaseMicrosecondSystemClockAvailable,
EpikTimerBaseTimebaseData,
EpikTimerBaseStartupCorrelationSample,
EpikTimerBaseUpdatedCorrelationSample);
end;
end.