-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmethod.py
222 lines (181 loc) · 6.85 KB
/
method.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import numpy as np
import tensorly.tenalg as tl
import scipy as sp
class Model(object):
def __init__(self, name='trpca_tnn'):
super().__init__()
self.name = name
def tubalrank(self, X, tol):
X = np.fft.fft(X, axis=2)
n1, n2, n3 = X.shape
s = np.zeros((np.min([n1, n2]), 1))
# i=0
s = s + np.linalg.svd(X[:, :, 0], full_matrices=False)
# i=1,...,halfn3
halfn3 = np.round(n3 / 2)
for i in range(1, halfn3):
s = s + np.linalg.svd(X[:, :, i], full_matrices=False) * 2
# if n3 is even
if np.mod(n3, 2) == 0:
i = halfn3
s = s + np.linalg.svd(X[:, :, i], full_matrices=False)
s = s / n3
# Check for this line
# if nargin==1
# tol = np.max([n1,n2]) * eps(np.max(s));
trank = np.sum(s[s > tol])
return trank
def tprod(self, A, B):
n1, n2, n3 = A.shape
m1, m2, m3 = B.shape
if n2 != m1 or n3 != m3:
raise ValueError("Inner tensor dimensions must agree.")
Af = np.fft.fft(A, axis=2)
Bf = np.fft.fft(B, axis=2)
Cf = np.zeros((n1, m2, n3), dtype=complex)
# first frontal slice
Cf[:, :, 0] = Af[:, :, 0].dot(Bf[:, :, 0])
# i=2,...,halfn3
halfn3 = int(np.round(n3 / 2))
# print("halfn3: ", halfn3)
for i in range(1, halfn3):
Cf[:, :, i] = Af[:, :, i].dot(Bf[:, :, i])
Cf[:, :, n3 - i] = np.conj(Cf[:, :, i]) # CHECK INDEXING
# print("i: ", i, ", n3-i: ", n3-i)
# if n3 is even
if np.mod(n3, 2) == 0:
i = halfn3
# print("Even: ", i)
Cf[:, :, i] = Af[:, :, i].dot(Bf[:, :, i])
C = np.fft.ifft(Cf, axis=2)
return C, Af, Bf, Cf
def prox_tnn(self, Y, rho):
n1, n2, n3 = Y.shape
X = np.zeros(Y.shape, dtype=complex)
Y = np.fft.fft(Y, axis=2)
tnn = 0
trank = 0
# first frontal slice
U, S, V = np.linalg.svd(Y[:, :, 0], full_matrices=False)
r = len(S[S > rho])
if r >= 1:
S = S[0:r] - rho
X[:, :, 0] = U[:, 0:r].dot(np.diag(S)).dot(V.T[:, 0:r].T)
tnn = tnn + np.sum(S)
trank = np.max([trank, r])
# i=2,...,halfn3
halfn3 = int(np.round(n3 / 2))
for i in range(1, halfn3):
U, S, V = np.linalg.svd(Y[:, :, i], full_matrices=False)
r = len(S[S > rho])
if r >= 1:
S = S[0:r] - rho
X[:, :, i] = U[:, 0:r].dot(np.diag(S)).dot(V.T[:, 0:r].T)
tnn = tnn + np.sum(S) * 2
trank = np.max([trank, r])
X[:, :, n3 - i] = np.conj(X[:, :, i])
# if n3 is even
if np.mod(n3, 2) == 0:
U, S, V = np.linalg.svd(Y[:, :, halfn3], full_matrices=False)
r = len(S[S > rho])
if r >= 1:
S = S[0:r] - rho
X[:, :, halfn3] = U[:, 0:r].dot(np.diag(S)).dot(V.T[:, 0:r].T)
tnn = tnn + np.sum(S)
trank = np.max([trank, r])
# Output results
tnn = tnn / n3
X = np.fft.ifft(X, axis=2)
return X, tnn
#
def prox_l1(self, b, lambda_):
return np.maximum(0, b - lambda_) + np.minimum(0, b + lambda_)
# Solve the Tensor Robust Principal Component Analysis (TRPCA) based on
# Tensor Nuclear Norm (TNN) problem by ADMM:
#
# min_{L,S} ||L||_*+lambda*||S||_1, s.t. X=L+S
#
# ---------------------------------------------
# Input:
# X - d1*d2*d3 tensor
# lambda - > 0, parameter
# opts - Structure value in Matlab. The fields are
# opts.tol - termination tolerance
# opts.max_iter - maximum number of iterations
# opts.mu - stepsize for dual variable updating in ADMM
# opts.max_mu - maximum stepsize
# opts.rho - rho>=1, ratio used to increase mu
# opts.DEBUG - 0 or 1
#
# Output:
# L - d1*d2*d3 tensor
# S - d1*d2*d3 tensor
# obj - objective function value
# err - residual
# iter - number of iterations
#
# version 1.0 - 19/06/2016
#
# Written by Canyi Lu (canyilu@gmail.com)
# Ported by Fernando Hermosillo
#
def trpca_tnn(self, X, S_d, S_m, TT, lambda_=713, mu=1e-2, alpha=0.3):
# Options structure
# Options = namedtuple("Options", "tol max_iter rho mu max_mu DEBUG")
# result = namedtuple('Result',result._fields+('point',))
# Default options
tol = 1e-5
max_iter = 500 # 500
rho = 1.1
max_mu = 1e10
DEBUG = False
# Lambda
dim = X.shape
# Initialize L, S and Y
L = np.zeros((dim))
S = L
Y = L
## ITERATIVE PROCESS
for itercount in range(0, max_iter):
Lk = L
Sk = S
# update L
L, tnnL = self.prox_tnn(-S + X - Y / mu, 1 / mu)
# update S
S = self.prox_l1(-L + X - Y / mu, lambda_ / mu)
# Compute residual error
dY = L + S - X
chgL = np.max(np.abs(Lk.flatten() - L.flatten()))
chgS = np.max(np.abs(Sk.flatten() - S.flatten()))
chg = np.max([chgL, chgS, np.max(np.abs(dY.flatten()))])
# Debug
if DEBUG:
if itercount == 1 or np.mod(itercount, 10) == 0:
obj = tnnL + lambda_ * np.linalg.norm(S[:], ord=1)
err = np.linalg.norm(dY[:])
print("iter ", iter, ", mu=", mu, ", obj=", obj, ", err=", err)
# Stop condition
if chg < tol:
break
Y = Y + mu * dY
mu = np.min([rho * mu, max_mu])
#obj = tnnL + lambda_ * np.linalg.norm(S.flatten().flatten(), ord=1)
#err = np.linalg.norm(dY.flatten().flatten())
L1 = L.real
L2 = L.real
delta = 1
while(delta > 1e-6):
l1 = alpha * tl.mode_dot(L1, S_d, 1) + (1 - alpha) * TT
cha = l1 - L1
delta = np.linalg.norm(cha.flatten().flatten(), ord=1)
L1 = l1
delta = 1
while (delta > 1e-6):
l2 = alpha * tl.mode_dot(L2, S_m, 0) + (1 - alpha) * TT
cha = l2 - L2
delta = np.linalg.norm(cha.flatten().flatten(), ord=1)
L2 = l2
predict_X = (l1 + l2)/2
return predict_X
def __call__(self):
return getattr(self, self.name, None)