-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmain.py
148 lines (121 loc) · 5.77 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import argparse
import json
import logging
import os
from lm_eval import tasks, evaluator, utils
try:
import wandb
has_wandb = True
except ImportError:
has_wandb = False
logging.getLogger("openai").setLevel(logging.WARNING)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model", required=True)
parser.add_argument("--model_args", default="")
parser.add_argument("--tasks", default=None, choices=utils.MultiChoice(tasks.ALL_TASKS))
parser.add_argument("--provide_description", action="store_true")
parser.add_argument("--num_fewshot", type=int, default=0)
parser.add_argument("--batch_size", type=str, default=None)
parser.add_argument("--max_batch_size", type=int, default=None,
help="Maximal batch size to try with --batch_size auto")
parser.add_argument("--device", type=str, default=None)
parser.add_argument("--output_path", default=None)
parser.add_argument("--limit", type=float, default=None,
help="Limit the number of examples per task. "
"If <1, limit is a percentage of the total number of examples.")
parser.add_argument("--data_sampling", type=float, default=None)
parser.add_argument("--no_cache", action="store_true")
parser.add_argument("--decontamination_ngrams_path", default=None)
parser.add_argument("--description_dict_path", default=None)
parser.add_argument("--check_integrity", action="store_true")
parser.add_argument("--write_out", action="store_true", default=False)
parser.add_argument("--output_base_path", type=str, default=None)
parser.add_argument("--wandb_name", type = str)
parser.add_argument("--quant_config", type = str, default = 'FPT_config_llama', help="The PTQ method to use, [FPQ_config_llama, FPQ_baseline_config_llama, MinMax_config_llama]")
parser.add_argument("--qbits", nargs='+', type=int, help="In the format of (Weight bit widths, Activation bit widths, Embedding bit widths, W_exponent_bit, A_exponent_bit, Embedding_exponent_bit)")
parser.add_argument("--calib_size", type=int, default=32, help="Total number of calibration data sample")
parser.add_argument("--search_round", type=int, default=3, help="Total number of search round, must be larger than 1")
parser.add_argument("--search_intervals", nargs='+', type=float, default=(0.01,1.2,100) ,help="In the format of (gamma_1, gamma_2, search_interval)")
parser.add_argument("--only_eval", action="store_true", default=False, help='use only when you have the PTQ param and only want to evaluate')
parser.add_argument("--ptq_param_path", type=str, default="./q_params/FP4_FPQ.pt")
return parser.parse_args()
def main():
args = parse_args()
print(f"config: {args}")
if has_wandb:
print("init wandb")
wandb.init(project=args.wandb_name, config=args)
assert not args.provide_description # not implemented
if args.limit:
print(
"WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
)
if args.tasks is None:
task_names = tasks.ALL_TASKS
else:
task_names = utils.pattern_match(args.tasks.split(","), tasks.ALL_TASKS)
print(f"Selected Tasks: {task_names}")
description_dict = {}
if args.description_dict_path:
with open(args.description_dict_path, "r") as f:
description_dict = json.load(f)
if args.only_eval:
results = evaluator.only_evaluate(
model=args.model,
model_args=args.model_args,
tasks=task_names,
num_fewshot=args.num_fewshot,
batch_size=args.batch_size,
max_batch_size=args.max_batch_size,
device=args.device,
no_cache=args.no_cache,
limit=args.limit,
description_dict=description_dict,
decontamination_ngrams_path=args.decontamination_ngrams_path,
check_integrity=args.check_integrity,
write_out=args.write_out,
output_base_path=args.output_base_path,
qbits = tuple(args.qbits),
calib_size = 1,
quant_config = args.quant_config,
ptq_param_path= args.ptq_param_path
)
else:
results = evaluator.calibrate_evaluate(
model=args.model,
model_args=args.model_args,
tasks=task_names,
num_fewshot=args.num_fewshot,
batch_size=args.batch_size,
max_batch_size=args.max_batch_size,
device=args.device,
no_cache=args.no_cache,
limit=args.limit,
description_dict=description_dict,
decontamination_ngrams_path=args.decontamination_ngrams_path,
check_integrity=args.check_integrity,
write_out=args.write_out,
output_base_path=args.output_base_path,
qbits = tuple(args.qbits),
calib_size = args.calib_size,
quant_config = args.quant_config,
search_round=args.search_round,
search_intervals=tuple(args.search_intervals)
)
dumped = json.dumps(results, indent=2)
print(dumped)
if args.output_path:
os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
with open(args.output_path, "w") as f:
f.write(dumped)
batch_sizes = ",".join(map(str, results["config"]["batch_sizes"]))
print(
f"{args.model} ({args.model_args}), limit: {args.limit}, provide_description: {args.provide_description}, "
f"num_fewshot: {args.num_fewshot}, batch_size: {args.batch_size}{f' ({batch_sizes})' if batch_sizes else ''}"
)
print(evaluator.make_table(results))
if has_wandb:
wandb.finish()
if __name__ == "__main__":
main()