-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsurvival_bookdown.Rmd
447 lines (336 loc) · 13.9 KB
/
survival_bookdown.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
---
title: "dsSurvival: Survival models in DataSHIELD"
author: "Soumya Banerjee and Tom Bishop"
date: "`r Sys.Date()`"
site: bookdown::bookdown_site
documentclass: book
bibliography: [book.bib, packages.bib]
biblio-style: apalike
link-citations: yes
description: "This is a minimal example of using the bookdown package to write a book. The output format for this example is bookdown::gitbook."
---
# Prerequisites
This is a _sample_ book written in **Markdown**. You can use anything that Pandoc's Markdown supports, e.g., a math equation $a^2 + b^2 = c^2$.
The **bookdown** package can be installed from CRAN or Github:
```{r eval=FALSE}
install.packages("bookdown")
# or the development version
# devtools::install_github("rstudio/bookdown")
```
Remember each Rmd file contains one and only one chapter, and a chapter is defined by the first-level heading `#`.
To compile this example to PDF, you need XeLaTeX. You are recommended to install TinyTeX (which includes XeLaTeX): <https://yihui.org/tinytex/>.
```{r include=FALSE}
# automatically create a bib database for R packages
knitr::write_bib(c(
.packages(), 'bookdown', 'knitr', 'rmarkdown'
), 'packages.bib')
```
<!--chapter:end:index.Rmd-->
---
output:
pdf_document: default
html_document: default
---
# Introduction {#intro}
This is a document that outlines a vignette for implementing survival models
and meta-analyzing hazard ratios in the DataSHIELD platform.
You can label chapter and section titles using `{#label}` after them, e.g., we can reference Chapter \@ref(intro). If you do not manually label them, there will be automatic labels anyway, e.g., Chapter \@ref(methods).
Figures and tables with captions will be placed in `figure` and `table` environments, respectively.
```{r nice-fig, fig.cap='Here is a nice figure!', out.width='80%', fig.asp=.75, fig.align='center'}
par(mar = c(4, 4, .1, .1))
plot(pressure, type = 'b', pch = 19)
```
Reference a figure by its code chunk label with the `fig:` prefix, e.g., see Figure \@ref(fig:nice-fig). Similarly, you can reference tables generated from `knitr::kable()`, e.g., see Table \@ref(tab:nice-tab).
```{r nice-tab, tidy=FALSE}
knitr::kable(
head(iris, 20), caption = 'Here is a nice table!',
booktabs = TRUE
)
```
You can write citations, too. For example, we are using the **bookdown** package [@R-bookdown] in this sample book, which was built on top of R Markdown and **knitr** [@xie2015].
# Computational workflow
The computational steps are outlined below.
The first step is connecting to the server and loading the survival data.
We assume that the reader is familiar with these details.
```
devtools::install_github('neelsoumya/dsSurvivalClient', 'privacy_survival_curves')
library(knitr)
library(rmarkdown)
library(tinytex)
library(survival)
library(metafor)
library(ggplot2)
library(survminer)
library(dsSurvivalClient)
require('DSI')
require('DSOpal')
require('dsBaseClient')
builder <- DSI::newDSLoginBuilder()
builder$append(server="server1", url="https://opal-sandbox.mrc-epid.cam.ac.uk",
user="dsuser", password="password",
table = "SURVIVAL.EXPAND_NO_MISSING1")
builder$append(server="server2", url="https://opal-sandbox.mrc-epid.cam.ac.uk",
user="dsuser", password="password",
table = "SURVIVAL.EXPAND_NO_MISSING2")
builder$append(server="server3", url="https://opal-sandbox.mrc-epid.cam.ac.uk",
user="dsuser", password="password",
table = "SURVIVAL.EXPAND_NO_MISSING3")
logindata <- builder$build()
connections <- DSI::datashield.login(logins = logindata, assign = TRUE, symbol = "D")
```
```{r, include = FALSE}
####################
# Load library
####################
library(knitr)
library(rmarkdown)
library(tinytex)
library(survival)
library(metafor)
library(ggplot2)
# library(survminer)
#library(dsSurvival)
library(dsSurvivalClient)
require('DSI')
require('DSOpal')
require('dsBaseClient')
#######################
# Get data
#######################
builder <- DSI::newDSLoginBuilder()
# builder$append(server="server1", url="https://opal-sandbox.mrc-epid.cam.ac.uk",
# user="dsuser", password="password",
# table = "SURVIVAL.EXPAND_NO_MISSING1")
# builder$append(server="server2", url="https://opal-sandbox.mrc-epid.cam.ac.uk",
# user="dsuser", password="password",
# table = "SURVIVAL.EXPAND_NO_MISSING2")
# builder$append(server="server3", url="https://opal-sandbox.mrc-epid.cam.ac.uk",
# user="dsuser", password="password",
# table = "SURVIVAL.EXPAND_NO_MISSING3")
builder$append(server = "study1",
url = "http://192.168.56.100:8080/",
user = "administrator", password = "datashield_test&",
table = "SURVIVAL.EXPAND_NO_MISSING1", driver = "OpalDriver")
builder$append(server = "study2",
url = "http://192.168.56.100:8080/",
user = "administrator", password = "datashield_test&",
table = "SURVIVAL.EXPAND_NO_MISSING2", driver = "OpalDriver")
builder$append(server = "study3",
url = "http://192.168.56.100:8080/",
user = "administrator", password = "datashield_test&",
table = "SURVIVAL.EXPAND_NO_MISSING3", driver = "OpalDriver")
logindata <- builder$build()
##############
# login
##############
# Log onto the remote Opal training servers
connections <- DSI::datashield.login(logins = logindata, assign = TRUE, symbol = "D")
```
# Creating server-side variables for survival analysis
We now outline some steps for analysing survival data.
* make sure that the outcome variable is numeric
```
ds.asNumeric(x.name = "D$cens",
newobj = "EVENT",
datasources = connections)
ds.asNumeric(x.name = "D$survtime",
newobj = "SURVTIME",
datasources = connections)
```
* convert time id variable to a factor
```
ds.asFactor(input.var.name = "D$time.id",
newobj = "TID",
datasources = connections)
```
* create in the server-side the log(survtime) variable
```
ds.log(x = "D$survtime",
newobj = "log.surv",
datasources = connections)
```
* create start time variable
```
ds.asNumeric(x.name = "D$starttime",
newobj = "STARTTIME",
datasources = connections)
ds.asNumeric(x.name = "D$endtime",
newobj = "ENDTIME",
datasources = connections)
```
```{r, include=FALSE}
# make sure that the outcome is numeric
ds.asNumeric(x.name = "D$cens",
newobj = "EVENT",
datasources = connections)
ds.asNumeric(x.name = "D$survtime",
newobj = "SURVTIME",
datasources = connections)
# convert time id variable to a factor
ds.asFactor(input.var.name = "D$time.id",
newobj = "TID",
datasources = connections)
# create in the server-side the log(survtime) variable
ds.log(x = "D$survtime",
newobj = "log.surv",
datasources = connections)
# create start time variable
ds.asNumeric(x.name = "D$starttime",
newobj = "STARTTIME",
datasources = connections)
# create end time variable
ds.asNumeric(x.name = "D$endtime",
newobj = "ENDTIME",
datasources = connections)
# check which variables exist
dsBaseClient::ds.ls()
# call new function modify NAMESPACE and DESCRIPTION
# call coxph server side
# client side function is here:
# https://github.com/neelsoumya/dsBaseClient/blob/absolute_newbie_client/R/ds.coxph.SLMA.R
# server side function is here:
# https://github.com/neelsoumya/dsBase/blob/absolute_newbie/R/coxphSLMADS.R
```
# Create survival object and call ds.coxph.SLMA()
* use constructed Surv object in *ds.coxph.SLMA()*
```
dsSurvivalClient::ds.Surv(time='STARTTIME', time2='ENDTIME',
event = 'EVENT', objectname='surv_object',
type='counting')
coxph_model_full <- dsSurvivalClient::ds.coxph.SLMA(formula = 'surv_object~D$age+D$female')
```
* use direct inline call to *survival::Surv()*
```
dsSurvivalClient::ds.coxph.SLMA(formula = 'survival::Surv(time=SURVTIME,event=EVENT)~D$age+D$female',
dataName = 'D',
datasources = connections)
```
* call with *survival::strata()*
```
coxph_model_strata <- dsSurvivalClient::ds.coxph.SLMA(formula = 'surv_object~D$age +
survival::strata(D$female)')
summary(coxph_model_strata)
```
```{r, include=FALSE}
# 1. use constructed surv object in coxph
dsSurvivalClient::ds.Surv(time='STARTTIME', time2='ENDTIME', event = 'EVENT', objectname='surv_object', type='counting')
coxph_model_full <- dsSurvivalClient::ds.coxph.SLMA(formula = 'surv_object~D$age+D$female')
# 2. use direct inline call
dsSurvivalClient::ds.coxph.SLMA(formula = 'survival::Surv(time=SURVTIME,event=EVENT)~D$age+D$female', dataName = 'D', datasources = connections)
# 3. Call with strata()
coxph_model_strata <- dsSurvivalClient::ds.coxph.SLMA(formula = 'surv_object~D$age+survival::strata(D$female)')
summary(coxph_model_strata)
```
# Summary of survival objects
We can also summarize a server-side object of type *survival::Surv()*
using a call to *ds.coxphSummary()*. This will provide a non-disclosive
summary of the server-side object. An example call is shown below:
```
dsSurvivalClient::ds.coxphSummary(x = 'coxph_serverside')
```
```{r, include=FALSE}
#################################
# summary of coxphSLMA
#################################
# TODO:
# dsBaseClient::ds.summary(x = 'surv_object')
# dsBaseClient::ds.class(x = 'surv_object')
# dsBaseClient::ds.mean(x='surv_object')
#################################
# TODO: Plot survival curves
#################################
# fit <- survival::survfit(formula = 'surv_object~D$age+D$female', data = 'D')
# need ds.survfit() and survfitDS()
# fit_model <- ds.survfit(coxph_model[1])
# plot(fit_model)
# TODO:
# plot(survfit_km, fun="cloglog")
# TODO:
# ggplot like functionality see other functions
# In dsBaseClient::
# ds.survfit()
# datashield.aggregate("survfitDS", ....)
# return (the fit model)
# In dsBase::
# survfitDS(coxph_model)
# fit_model <- survival::survfit(coxph_model, newdata = 'D')
# return (fit_model)
# TODO: dsSurvivalClient::ds.survfit(formula='surv_object~1', objectname='survfit_object')
# verify that object has been created
dsBaseClient::ds.ls()
# ERROR summary of survfit not allowed
# dsBaseClient::ds.summary(x='survfit_object')
# dsBaseClient::ds.mean(x='survfit_object')
```
# Diagnostics for Cox proportional hazards models
We have also created functions to test for the assumptions of
Cox proportional hazards models.
```
dsSurvivalClient::ds.coxphSLMAassign(formula = 'surv_object~D$age+D$female',
objectname = 'coxph_serverside')
dsSurvivalClient::ds.cox.zphSLMA(fit = 'coxph_serverside')
dsSurvivalClient::ds.coxphSummary(x = 'coxph_serverside')
```
A diagnostic summary is shown below.
```{r, echo=FALSE}
dsSurvivalClient::ds.coxphSLMAassign(formula = 'surv_object~D$age+D$female', objectname = 'coxph_serverside')
dsSurvivalClient::ds.cox.zphSLMA(fit = 'coxph_serverside')
dsSurvivalClient::ds.coxphSummary(x = 'coxph_serverside')
```
# Meta-analyze hazard ratios
We now outline how the hazard ratios from the survival models are meta-analyzed.
We use the *metafor* package for meta-analysis. We show the summary of an
example meta-analysis and a forest plot below. The forest plot shows a basic
example of meta-analyzed hazard ratios from a survival model (analyzed in
dsSurvivalClient).
The log-hazard ratios and their standard errors from each study can be
found after running *ds.coxphSLMA()*
The hazard ratios can then be meta-analyzed:
```
input_logHR = c(coxph_model_full$study1$coefficients[1,2],
coxph_model_full$study2$coefficients[1,2],
coxph_model_full$study3$coefficients[1,2])
input_se = c(coxph_model_full$study1$coefficients[1,3],
coxph_model_full$study2$coefficients[1,3],
coxph_model_full$study3$coefficients[1,3])
metafor::rma(log_hazard_ratio, sei = se_hazard_ratio, method = 'REML')
```
A summary of this meta-analyzed model is shown below.
```{r, echo=FALSE}
# list of hazard ratios for first parameter (age) over 3 studies
input_logHR = c(coxph_model_full$study1$coefficients[1,2], coxph_model_full$study2$coefficients[1,2], coxph_model_full$study3$coefficients[1,2])
input_se = c(coxph_model_full$study1$coefficients[1,3], coxph_model_full$study2$coefficients[1,3], coxph_model_full$study3$coefficients[1,3])
meta_model <- metafor::rma(input_logHR, sei = input_se, method = 'REML')
summary(meta_model)
#######################################################
# forest plots of final meta-analyzed hazard ratios
#######################################################
```
We now show a forest plot with the meta-analyzed hazard ratios. The hazard ratios come from the dsSurvivalClient function *ds.coxphSLMA()*. The hazard ratios are meta-analyzed using the *metafor* package.
```{r fig.cap="Example forest plot of meta-analyzed hazard ratios.", echo=FALSE}
metafor::forest.rma(x = meta_model)
```
\newpage
```{r, include=FALSE}
#############################################
# disconnect
#############################################
DSI::datashield.logout(conns = connections)
```
* https://github.com/datashield
* http://www.metafor-project.org
* https://github.com/neelsoumya/dsBase
* https://github.com/neelsoumya/dsBaseClient
* https://github.com/neelsoumya/dsSurvival
* https://github.com/neelsoumya/dsSurvivalClient
* https://github.com/neelsoumya/datashield_testing_basic
<!--chapter:end:01-intro.Rmd-->
<!--chapter:end:03-method.Rmd-->
<!--chapter:end:04-application.Rmd-->
# Summary
This bookdown demonstrates how to build privacy poreserving survival models using dsSurvival in DataSHIELD.
<!--chapter:end:05-summary.Rmd-->
`r if (knitr::is_html_output()) '
# References {-}
'`
<!--chapter:end:06-references.Rmd-->