-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuipcc_evaluator.py
68 lines (53 loc) · 2.48 KB
/
uipcc_evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
########################################################
# Description: the main process to control the evaluations
# Author: Jamie Zhu <jimzhu@GitHub>
# License: MIT
# Last updated: 2016/05/04
########################################################
import numpy as np
import time
from commons.utils import logger # import from ../../commons
from commons import evallib # import from ../../commons
from wsdream import UIPCC
from scipy import stats
import multiprocessing
#======================================================#
# Function to evalute the approach at all settings
#======================================================#
def execute(matrix, para):
# loop over each density and each round
if para['parallelMode']: # run on multiple processes
pool = multiprocessing.Pool()
for den in para['density']:
for roundId in xrange(para['rounds']):
pool.apply_async(executeOneSetting, (matrix, den, roundId, para))
pool.close()
pool.join()
else: # run on single processes
for den in para['density']:
for roundId in xrange(para['rounds']):
executeOneSetting(matrix, den, roundId, para)
# summarize the dumped results
evallib.summarizeResult(para)
#======================================================#
# Function to run the prediction approach at one setting
#======================================================#
def executeOneSetting(matrix, density, roundId, para):
logger.info('density=%.2f, %2d-round starts.'%(density, roundId + 1))
# remove data matrix
(trainMatrix, testMatrix) = evallib.removeEntries(matrix, density, roundId)
# QoS prediction
startTime = time.clock() # to record the running time for one round
predictedMatrix1 = UIPCC.UPCC(trainMatrix, para)
predictedMatrix2 = UIPCC.IPCC(trainMatrix, para)
predictedMatrix = UIPCC.UIPCC(trainMatrix, predictedMatrix1,predictedMatrix2,para)
runningTime = float(time.clock() - startTime)
# evaluate the estimation error
evalResult = evallib.evaluate(testMatrix, predictedMatrix, para)
result = (evalResult, runningTime)
# dump the result at each density
outFile = '%s%s_%s_result_%.2f_round%02d.tmp'%(para['outPath'], para['dataName'],
para['dataType'], density, roundId + 1)
evallib.dumpresult(outFile, result)
logger.info('density=%.2f, %2d-round done.'%(density, roundId + 1))
logger.info('----------------------------------------------')