-
Notifications
You must be signed in to change notification settings - Fork 645
/
inference_am_vocoder_joint.py
158 lines (121 loc) · 6.02 KB
/
inference_am_vocoder_joint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright 2023, YOUDAO
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from models.prompt_tts_modified.jets import JETSGenerator
from models.prompt_tts_modified.simbert import StyleEncoder
from transformers import AutoTokenizer
import os, sys, warnings, torch, glob, argparse
import numpy as np
from models.hifigan.get_vocoder import MAX_WAV_VALUE
import soundfile as sf
from yacs import config as CONFIG
from tqdm import tqdm
def get_style_embedding(prompt, tokenizer, style_encoder):
prompt = tokenizer([prompt], return_tensors="pt")
input_ids = prompt["input_ids"]
token_type_ids = prompt["token_type_ids"]
attention_mask = prompt["attention_mask"]
with torch.no_grad():
output = style_encoder(
input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
)
style_embedding = output["pooled_output"].cpu().squeeze().numpy()
return style_embedding
def main(args, config):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
root_path = os.path.join(config.output_directory, args.logdir)
ckpt_path = os.path.join(root_path, "ckpt")
files = os.listdir(ckpt_path)
for file in files:
if args.checkpoint:
if file != args.checkpoint:
continue
checkpoint_path = os.path.join(ckpt_path, file)
with open(config.model_config_path, 'r') as fin:
conf = CONFIG.load_cfg(fin)
conf.n_vocab = config.n_symbols
conf.n_speaker = config.speaker_n_labels
style_encoder = StyleEncoder(config)
model_CKPT = torch.load(config.style_encoder_ckpt, map_location="cpu")
model_ckpt = {}
for key, value in model_CKPT['model'].items():
new_key = key[7:]
model_ckpt[new_key] = value
style_encoder.load_state_dict(model_ckpt, strict=False)
generator = JETSGenerator(conf).to(device)
model_CKPT = torch.load(checkpoint_path, map_location=device)
generator.load_state_dict(model_CKPT['generator'])
generator.eval()
with open(config.token_list_path, 'r') as f:
token2id = {t.strip():idx for idx, t, in enumerate(f.readlines())}
with open(config.speaker2id_path, encoding='utf-8') as f:
speaker2id = {t.strip():idx for idx, t in enumerate(f.readlines())}
tokenizer = AutoTokenizer.from_pretrained(config.bert_path)
text_path = args.test_file
if os.path.exists(root_path + "/test_audio/audio/" +f"{file}/"):
r = glob.glob(root_path + "/test_audio/audio/" +f"{file}/*")
for j in r:
os.remove(j)
texts = []
prompts = []
speakers = []
contents = []
with open(text_path, "r") as f:
for line in f:
line = line.strip().split("|")
speakers.append(line[0])
prompts.append(line[1])
texts.append(line[2].split())
contents.append(line[3])
for i, (speaker, prompt, text, content) in enumerate(tqdm(zip(speakers, prompts, texts, contents))):
style_embedding = get_style_embedding(prompt, tokenizer, style_encoder)
content_embedding = get_style_embedding(content, tokenizer, style_encoder)
if speaker not in speaker2id:
continue
speaker = speaker2id[speaker]
text_int = [token2id[ph] for ph in text]
sequence = torch.from_numpy(np.array(text_int)).to(device).long().unsqueeze(0)
sequence_len = torch.from_numpy(np.array([len(text_int)])).to(device)
style_embedding = torch.from_numpy(style_embedding).to(device).unsqueeze(0)
content_embedding = torch.from_numpy(content_embedding).to(device).unsqueeze(0)
speaker = torch.from_numpy(np.array([speaker])).to(device)
with torch.no_grad():
infer_output = generator(
inputs_ling=sequence,
inputs_style_embedding=style_embedding,
input_lengths=sequence_len,
inputs_content_embedding=content_embedding,
inputs_speaker=speaker,
alpha=1.0
)
audio = infer_output["wav_predictions"].squeeze()* MAX_WAV_VALUE
audio = audio.cpu().numpy().astype('int16')
if not os.path.exists(root_path + "/test_audio/audio/" +f"{file}/"):
os.makedirs(root_path + "/test_audio/audio/" +f"{file}/", exist_ok=True)
sf.write(file=root_path + "/test_audio/audio/" +f"{file}/{i+1}.wav", data=audio, samplerate=config.sampling_rate) #h.sampling_rate
if __name__ == '__main__':
print("run!")
p = argparse.ArgumentParser()
p.add_argument('-d', '--logdir', type=str, required=True)
p.add_argument("-c", "--config_folder", type=str, required=True)
p.add_argument("--checkpoint", type=str, required=False, default='', help='inference specific checkpoint, e.g --checkpoint checkpoint_230000')
p.add_argument('-t', '--test_file', type=str, required=True, help='the absolute path of test file that is going to inference')
args = p.parse_args()
##################################################
sys.path.append(os.path.dirname(os.path.abspath("__file__")) + "/" + args.config_folder)
from config import Config
config = Config()
##################################################
main(args, config)