-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpreprocessing.py
123 lines (95 loc) · 2.9 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import smash
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
def load_data(
catchment: str | pd.DataFrame,
start_time: str | pd.Series,
end_time: str | pd.Series,
q_dir="../DATA/qobs",
prcp_dir="../DATA/prcp",
pet_dir="../DATA/pet",
desc_dir="../DATA/descriptor",
desc_name=[
"pente",
"ddr",
"karst2019_shyreg",
"foret",
"urbain",
"resutilpot",
"vhcapa",
"grassland",
"medcapa",
"arable",
],
):
if isinstance(catchment, (pd.Series, pd.DataFrame)):
pass
elif isinstance(catchment, str):
catchment = pd.read_csv(catchment)
else:
raise TypeError(
f"catchment must be str or DataFrame, and not {type(catchment)}"
)
flowdir = smash.factory.load_dataset("flwdir")
if not isinstance(catchment.code, str):
mesh = smash.factory.generate_mesh(
flowdir,
x=catchment.x.values,
y=catchment.y.values,
area=catchment.area.values * 10**6,
code=catchment.code.values,
)
else:
mesh = smash.factory.generate_mesh(
flowdir,
x=catchment.x,
y=catchment.y,
area=catchment.area * 10**6,
code=catchment.code,
)
setup = {
"dt": 3600,
"start_time": start_time,
"end_time": end_time,
"read_qobs": True,
"qobs_directory": q_dir,
"read_prcp": True,
"prcp_format": "tif",
"prcp_conversion_factor": 0.1,
"prcp_directory": prcp_dir,
"read_pet": True,
"pet_format": "tif",
"pet_conversion_factor": 1,
"daily_interannual_pet": True,
"pet_directory": pet_dir,
"read_descriptor": False if desc_dir == "..." else True,
"descriptor_name": desc_name,
"descriptor_directory": desc_dir,
"sparse_storage": True,
}
return setup, mesh
def preprocess_visualize(setup, mesh, descriptor_plot=True):
plt.imshow(mesh["flwdst"])
plt.colorbar(label="Flow distance (m)")
plt.title("Nested multiple gauge - Flow distance")
plt.show()
canvas = np.zeros(shape=mesh["flwdir"].shape)
canvas = np.where(mesh["active_cell"] == 0, np.nan, canvas)
for pos in mesh["gauge_pos"]:
canvas[tuple(pos)] = 1
plt.imshow(canvas, cmap="Set1_r")
plt.title("Nested multiple gauge - Gauges location")
plt.show()
if descriptor_plot:
setup_copy = setup.copy()
setup_copy["end_time"] = pd.Timestamp(setup_copy["start_time"]) + pd.Timedelta(
days=1
)
model = smash.Model(setup_copy, mesh)
for i, d in enumerate(setup_copy["descriptor_name"]):
des = model.physio_data.descriptor[..., i]
plt.imshow(des)
plt.colorbar()
plt.title(d)
plt.show()