forked from NVIDIA/Megatron-LM
-
Notifications
You must be signed in to change notification settings - Fork 13
/
learning_rates.py
112 lines (98 loc) · 4.65 KB
/
learning_rates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch DataLoader for TFRecords"""
import torch
from torch.optim.lr_scheduler import _LRScheduler
import math
from utils import print_rank_0
class AnnealingLR(_LRScheduler):
"""Anneals the learning rate"""
DECAY_STYLES = ['linear', 'cosine', 'constant', 'None']
def __init__(self, optimizer, start_lr, warmup_iter, num_iters,
decay_style=None, last_iter=-1, min_lr=0.0,
use_checkpoint_lr_scheduler=True,
override_lr_scheduler=False):
self.optimizer = optimizer
self.start_lr = start_lr
self.min_lr = min_lr
self.warmup_iter = warmup_iter
self.num_iters = last_iter + 1
self.end_iter = num_iters
self.decay_style = decay_style.lower() if isinstance(decay_style, str) \
else None
self.override_lr_scheduler = override_lr_scheduler
self.use_checkpoint_lr_scheduler = use_checkpoint_lr_scheduler
if self.override_lr_scheduler:
assert not self.use_checkpoint_lr_scheduler, 'both override and '\
'use-checkpoint are set.'
self.step(self.num_iters)
if torch.distributed.get_rank() == 0:
print('learning rate decaying', decay_style)
def get_lr(self):
# https://openreview.net/pdf?id=BJYwwY9ll pg. 4
num_iters_ = min(self.num_iters, self.end_iter - self.warmup_iter)
if self.warmup_iter > 0 and self.num_iters <= self.warmup_iter:
return float(self.start_lr) * num_iters_ / self.warmup_iter
else:
if self.decay_style == self.DECAY_STYLES[0]:
lr = self.start_lr * ((self.end_iter - (num_iters_ - self.warmup_iter)) / self.end_iter)
elif self.decay_style == self.DECAY_STYLES[1]:
lr = self.start_lr / 2.0 * (math.cos(math.pi * (num_iters_ - self.warmup_iter) / self.end_iter) + 1)
else:
lr = self.start_lr
return max(lr, self.min_lr)
def step(self, step_num=None):
if step_num is None:
step_num = self.num_iters + 1
self.num_iters = step_num
new_lr = self.get_lr()
for group in self.optimizer.param_groups:
group['lr'] = new_lr
def state_dict(self):
sd = {
'start_lr': self.start_lr,
'warmup_iter': self.warmup_iter,
'num_iters': self.num_iters,
'decay_style': self.decay_style,
'end_iter': self.end_iter,
'min_lr': self.min_lr
}
return sd
def check_and_set_(self, cls_value, sd_value, name):
if self.override_lr_scheduler:
print_rank_0(' > overriding {} value to {}'.format(name, cls_value))
return cls_value
else:
if not self.use_checkpoint_lr_scheduler:
assert cls_value == sd_value, 'AnnealingLR: class input value' \
'and checkpoint values for {} do not match'.format(name)
print_rank_0(' > using checkpoint value {} for {}'.format(sd_value,
name))
return sd_value
def load_state_dict(self, sd):
self.start_lr = self.check_and_set_(self.start_lr, sd['start_lr'],
'learning rate')
self.min_lr = self.check_and_set_(self.min_lr, sd['min_lr'],
'minimum learning rate')
self.warmup_iter = self.check_and_set_(self.warmup_iter,
sd['warmup_iter'],
'warmup iterations')
self.end_iter = self.check_and_set_(self.end_iter, sd['end_iter'],
'total number of iterations')
self.decay_style = self.check_and_set_(self.decay_style,
sd['decay_style'],
'decay style')
self.num_iters = sd['num_iters']
self.step(self.num_iters)