-
Notifications
You must be signed in to change notification settings - Fork 0
/
roadline.py
65 lines (49 loc) · 1.76 KB
/
roadline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
def lanesDetection(img):
# img = cv.imread("./img/road.jpg")
# img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
# print(img.shape)
height = img.shape[0]
width = img.shape[1]
region_of_interest_vertices = [
(200, height), (width/2, height/1.37), (width-300, height)
]
gray_img = cv.cvtColor(img, cv.COLOR_RGB2GRAY)
edge = cv.Canny(gray_img, 50, 100, apertureSize=3)
cropped_image = region_of_interest(
edge, np.array([region_of_interest_vertices], np.int32))
lines = cv.HoughLinesP(cropped_image, rho=2, theta=np.pi/180,
threshold=50, lines=np.array([]), minLineLength=10, maxLineGap=30)
image_with_lines = draw_lines(img, lines)
# plt.imshow(image_with_lines)
# plt.show()
return image_with_lines
def region_of_interest(img, vertices):
mask = np.zeros_like(img)
# channel_count = img.shape[2]
match_mask_color = 255
cv.fillPoly(mask, vertices, match_mask_color)
masked_image = cv.bitwise_and(img, mask)
return masked_image
def draw_lines(img, lines):
img = np.copy(img)
blank_image = np.zeros((img.shape[0], img.shape[1], 3), np.uint8)
for line in lines:
for x1, y1, x2, y2 in line:
cv.line(blank_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
img = cv.addWeighted(img, 0.8, blank_image, 1, 0.0)
return img
def videolanes():
cap = cv.VideoCapture('./img/Lane.mp4')
while(cap.isOpened()):
ret, frame = cap.read()
frame = lanesDetection(frame)
cv.imshow('Lanes Detection', frame)
if cv.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv.destroyAllWindows()
if __name__ == "__main__":
videolanes()