-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_pretrain.py
355 lines (309 loc) · 12.4 KB
/
main_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# Copyright 2023 solo-learn development team.
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to use,
# copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
# Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies
# or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
# INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
# PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
# FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
import inspect
import os
import signal
import hydra
import torch
import wandb
from torchsummary import summary
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.callbacks import LearningRateMonitor, RichModelSummary
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.strategies.ddp import DDPStrategy
from pytorch_lightning.plugins.environments import SLURMEnvironment
from src.args.pretrain import parse_cfg
from src.data.classification_dataloader import (
prepare_data as prepare_data_classification,
)
from src.data.pretrain_dataloader import (
FullTransformPipeline,
FullTransformAlbumentationPipeline,
NCropAugmentation,
NCropAlbumentationAugmentation,
build_transform_pipeline,
prepare_dataloader,
prepare_datasets,
)
from src.methods import METHODS
from src.utils.auto_resumer import AutoResumer
from src.utils.checkpointer import Checkpointer
from src.utils.slurm_logger import SLURMLogger
from src.utils.misc import make_contiguous, omegaconf_select
try:
from src.utils.auto_umap import AutoUMAP
except ImportError:
_umap_available = False
else:
_umap_available = True
try:
import idr_torch
except ImportError:
_idr_torch_available = False
else:
_idr_torch_available = True
os.environ["WANDB__SERVICE_WAIT"] = "300"
os.environ["_WANDB_STARTUP_DEBUG"] = "true"
@hydra.main(version_base="1.2")
def main(cfg: DictConfig):
# hydra doesn't allow us to add new keys for "safety"
# set_struct(..., False) disables this behavior and allows us to add more parameters
# without making the user specify every single thing about the model
OmegaConf.set_struct(cfg, False)
cfg = parse_cfg(cfg)
seed_everything(cfg.seed)
assert cfg.method in METHODS, f"Choose from {METHODS.keys()}"
if cfg.data.num_large_crops != 2:
assert cfg.method in ["wmse", "mae", "dino"]
model = METHODS[cfg.method](cfg)
make_contiguous(model)
# can provide up to ~20% speed up
if not cfg.performance.disable_channel_last:
model = model.to(memory_format=torch.channels_last)
# print model
if cfg.slurm.enabled and _idr_torch_available:
if idr_torch.rank == 0:
print(summary(model))
# ------------------------ SSL Validation Loss ACTIVATED ------------------------ #
if cfg.ssl_val_loss:
# pretrain dataloader
pipelines = []
for aug_cfg in cfg.augmentations:
if cfg.mixed_channels:
pipelines.append(
NCropAlbumentationAugmentation(
build_transform_pipeline(cfg.data.dataset, aug_cfg),
aug_cfg.num_crops,
)
)
transform = FullTransformAlbumentationPipeline(pipelines)
else:
pipelines.append(
NCropAugmentation(
build_transform_pipeline(cfg.data.dataset, aug_cfg),
aug_cfg.num_crops,
)
)
transform = FullTransformPipeline(pipelines)
if cfg.debug_augmentations:
print("Transforms:")
print(transform)
train_dataset, val_dataset = prepare_datasets(
cfg.data.dataset,
transform,
train_data_path=cfg.data.train_path,
val_data_path=cfg.data.val_path,
data_format=cfg.data.format,
no_labels=cfg.data.no_labels,
data_fraction=cfg.data.fraction,
return_val_dataset=cfg.ssl_val_loss,
sample_ratio=cfg.data.sample_ratio,
)
train_loader = prepare_dataloader(
dataset=train_dataset,
batch_size=cfg.optimizer.batch_size,
num_workers=cfg.data.num_workers,
channel_strategy=cfg.channels_strategy,
shuffle=True,
)
val_loader = prepare_dataloader(
dataset=val_dataset,
batch_size=cfg.optimizer.batch_size,
num_workers=cfg.data.num_workers,
channel_strategy=cfg.channels_strategy,
shuffle=False,
)
# ------------------------ SSL Validation Loss DEACTIVATED ------------------------ #
else:
# validation dataloader for when it is available
val_data_format = cfg.data.format
_, val_loader = prepare_data_classification(
cfg.data.dataset,
train_data_path=cfg.data.train_path,
val_data_path=cfg.data.val_path,
data_format=val_data_format,
batch_size=cfg.optimizer.batch_size,
num_workers=cfg.data.num_workers,
channel_strategy=cfg.channels_strategy,
sample_ratio=cfg.data.sample_ratio,
)
# pretrain dataloader
pipelines = []
for aug_cfg in cfg.augmentations:
if cfg.mixed_channels:
pipelines.append(
NCropAlbumentationAugmentation(
build_transform_pipeline(cfg.data.dataset, aug_cfg),
aug_cfg.num_crops,
)
)
transform = FullTransformAlbumentationPipeline(pipelines)
else:
pipelines.append(
NCropAugmentation(
build_transform_pipeline(cfg.data.dataset, aug_cfg),
aug_cfg.num_crops,
)
)
transform = FullTransformPipeline(pipelines)
if cfg.debug_augmentations:
print("Transforms:")
print(transform)
train_dataset, _ = prepare_datasets(
cfg.data.dataset,
transform,
train_data_path=cfg.data.train_path,
val_data_path=cfg.data.val_path,
data_format=cfg.data.format,
no_labels=cfg.data.no_labels,
data_fraction=cfg.data.fraction,
return_val_dataset=cfg.ssl_val_loss,
sample_ratio=cfg.data.sample_ratio,
)
train_loader = prepare_dataloader(
dataset=train_dataset,
batch_size=cfg.optimizer.batch_size,
num_workers=cfg.data.num_workers,
channel_strategy=cfg.channels_strategy,
)
# AutoResumer
ckpt_path, wandb_run_id = None, None
if (
cfg.auto_resume.enabled
and cfg.resume_from_checkpoint is None
and not cfg.slurm.enabled
):
auto_resumer = AutoResumer(
checkpoint_dir=os.path.join(cfg.checkpoint.dir, cfg.method),
max_hours=cfg.auto_resume.max_hours,
)
resume_from_checkpoint, wandb_run_id = auto_resumer.find_checkpoint(cfg)
if resume_from_checkpoint is not None:
print(
"Resuming from previous checkpoint that matches specifications:",
f"'{resume_from_checkpoint}'",
)
ckpt_path = resume_from_checkpoint
elif cfg.resume_from_checkpoint is not None:
ckpt_path = cfg.resume_from_checkpoint
del cfg.resume_from_checkpoint
callbacks = []
if cfg.checkpoint.enabled:
# save checkpoint on last epoch only
ckpt = Checkpointer(
cfg,
logdir=os.path.join(cfg.checkpoint.dir, cfg.method),
frequency=cfg.checkpoint.frequency,
keep_prev=cfg.checkpoint.keep_prev,
)
callbacks.append(ckpt)
if omegaconf_select(cfg, "auto_umap.enabled", False):
assert (
_umap_available
), "UMAP is not currently available, please install it first with [umap]."
auto_umap = AutoUMAP(
cfg.name,
logdir=os.path.join(cfg.auto_umap.dir, cfg.method),
frequency=cfg.auto_umap.frequency,
)
callbacks.append(auto_umap)
# Logger
if cfg.wandb.enabled:
if not cfg.slurm.enabled:
logger = WandbLogger(
name=cfg.name,
project=cfg.wandb.project,
entity=cfg.wandb.entity,
offline=cfg.wandb.offline,
resume="allow" if (wandb_run_id or cfg.slurm.enabled) else None,
id=os.environ["SLURM_JOB_ID"] if cfg.slurm.enabled else wandb_run_id,
)
logger.watch(model, log="gradients", log_freq=100)
logger.log_hyperparams(OmegaConf.to_container(cfg))
else:
logger = SLURMLogger(
save_dir=os.path.join(
cfg.checkpoint.dir, cfg.method, str(cfg.slurm.job_id)
),
name=cfg.name,
project=cfg.wandb.project,
entity=cfg.wandb.entity,
offline=cfg.wandb.offline,
version=os.environ["SLURM_JOB_ID"] if cfg.slurm.enabled else None,
)
logger.log_hyperparams(OmegaConf.to_container(cfg))
# lr logging
lr_monitor = LearningRateMonitor(logging_interval="step")
callbacks.append(lr_monitor)
# model summary
model_summary = RichModelSummary()
callbacks.append(model_summary)
trainer_kwargs = OmegaConf.to_container(cfg)
# we only want to pass in valid Trainer args, the rest may be user specific
valid_kwargs = inspect.signature(Trainer.__init__).parameters
trainer_kwargs = {
name: trainer_kwargs[name] for name in valid_kwargs if name in trainer_kwargs
}
trainer_kwargs.update(
{
"logger": logger if cfg.wandb.enabled else None,
"callbacks": callbacks,
"enable_checkpointing": False,
"strategy": DDPStrategy(find_unused_parameters=False)
if cfg.strategy == "ddp"
else cfg.strategy,
"plugins": [SLURMEnvironment(requeue_signal=signal.SIGUSR1)]
if cfg.slurm.enabled
else None,
}
)
trainer = Trainer(**trainer_kwargs)
# fix for incompatibility with nvidia-dali and pytorch lightning
# with dali 1.15 (this will be fixed on 1.16)
# https://github.com/Lightning-AI/lightning/issues/12956
try:
from pytorch_lightning.loops import FitLoop
class WorkaroundFitLoop(FitLoop):
@property
def prefetch_batches(self) -> int:
return 1
trainer.fit_loop = WorkaroundFitLoop(
trainer.fit_loop.min_epochs, trainer.fit_loop.max_epochs
)
except ImportError:
pass
# Train
trainer.fit(model, train_loader, val_loader, ckpt_path=ckpt_path)
print("TRAINING FINISHED")
# Workaround to log metrics to wandb at the end of a full run when using slurm autoresubmit
if isinstance(logger, SLURMLogger) and cfg.slurm.enabled and _idr_torch_available:
if idr_torch.rank == 0:
run = wandb.init(**logger._wandb_init)
print("initialized WanDB, run name : ", logger._name)
print("WANDB Run id : ", run.id)
print("logging to WANDB...")
wandb.config.update(logger.hyperparams, allow_val_change=True)
# read the log file and log each line to wandb
with open(logger._save_dir + "/training_logs.txt", "r") as f:
for line in f:
# convert line to dict
wandb.log(
eval(line)
) # allows to delete duplicates if any in terms of epoch
wandb.finish()
if __name__ == "__main__":
main()