-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_utils.py
415 lines (343 loc) · 12.3 KB
/
_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
"""Utility functions.
Copyright 2023 Mattia Orlandi
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from __future__ import annotations
import warnings
from math import ceil
import numpy as np
import pandas as pd
import torch
from scipy import signal
from scipy.cluster.vq import kmeans2
from sklearn.metrics import silhouette_score
from .._base import Signal, signal_to_array
def eigendecomposition(m: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
"""Perform eigendecomposition of the covariance matrix of a given Tensor.
Parameters
----------
m: Tensor
Square Tensor.
Returns
-------
Tensor:
2D Tensor of eigenvectors sorted by the corresponding eigenvalue in descending order.
Tensor:
1D Tensor of eigenvalues sorted in descending order.
"""
eig_vals, eig_vecs = torch.linalg.eigh(m)
# Improve numerical stability
eps = torch.finfo(eig_vals.dtype).eps
degenerate_idx = torch.lt(eig_vals, eps).nonzero()
if torch.any(degenerate_idx):
warnings.warn(f"Some eigenvalues are smaller than epsilon ({eps:.3e}).")
eig_vals[degenerate_idx] = eps
eig_vecs *= torch.sign(eig_vecs[0]) # guarantee consistent sign
sort_idx = torch.argsort(eig_vals, descending=True)
eig_vals, eig_vecs = eig_vals[sort_idx], eig_vecs[:, sort_idx]
return eig_vecs, eig_vals
def power_spectrum(x: Signal, fs: float) -> pd.DataFrame:
"""Compute the power spectrum of a given signal.
Parameters
----------
x : Signal
A signal with shape (n_samples, n_channels).
fs : float
Sampling frequency.
Returns
-------
DataFrame
Power spectrum for each channel.
"""
# Convert to array
x_array = signal_to_array(x, allow_1d=True).T
n_ch, n_samp = x_array.shape
spec_len = n_samp // 2 + 1
# Compute frequencies
freqs = np.fft.rfftfreq(n_samp, 1 / fs)
idx = np.argsort(freqs)
freqs = freqs[idx]
# Compute power spectrum channel-wise
pow_spec = np.zeros(shape=(spec_len, n_ch))
for i in range(n_ch):
# Compute FFT for current channel
ch_fft = np.fft.rfft(x_array[i])
# Compute power spectrum for current channel
ch_pow_spec = np.abs(ch_fft) ** 2
pow_spec[:, i] = ch_pow_spec[idx]
return pd.DataFrame(pow_spec, index=freqs)
def _compute_delay(s1: np.ndarray, s2: np.ndarray) -> int:
"""Find the lag between two signals with the same length."""
# Compute cross-correlation
corr = signal.correlate(s2, s1, mode="same")
delay_steps = int(round(s1.shape[0] / 2))
delay_arr = np.arange(-delay_steps, delay_steps)
# Return optimal delay
return delay_arr[np.argmax(corr)].item()
def check_delayed_pair(
ref_pulses_bin: np.ndarray,
sec_pulses_bin: np.ndarray,
fs: float,
tol_ms: float,
min_perc: float,
) -> tuple[bool, int, int, int, int]:
"""Check if two pulse trains are the same up to a delay by counting the common pulses.
Parameters
----------
ref_pulses_bin : ndarray
Reference pulse train represented as an array of 1s and 0s with shape (n_pulses,).
sec_pulses_bin : ndarray
Secondary pulse train represented as an array of 1s and 0s with shape (n_pulses,).
fs : float
Sampling frequency of the pulse trains.
tol_ms : float
Tolerance for considering two pulses as synchronized.
min_perc : float
Minimum percentage of common pulses for considering the two pulse trains as the same.
Returns
-------
bool
Whether the two pulse trains are the same or not.
int
Number of samples representing the lag between the pulse trains.
int
Number of TPs if the pulse trains are the same, zero otherwise.
int
Number of FPs if the pulse trains are the same, zero otherwise.
int
Number of FNs if the pulse trains are the same, zero otherwise.
"""
assert (
ref_pulses_bin.shape == sec_pulses_bin.shape
), "The two pulse trains must have the same length."
assert len(ref_pulses_bin.shape) == 1, "The pulse trains must be 1D."
# Find delay between reference and secondary pulse trains
delay = _compute_delay(ref_pulses_bin, sec_pulses_bin)
# Adjust for delay and get time of pulses
ref_pulses_t = np.flatnonzero(ref_pulses_bin) / fs
sec_pulses_t = (np.flatnonzero(sec_pulses_bin) - delay) / fs # compensate for delay
# Filter secondary pulses
n_sec = sec_pulses_t.size
sec_pulses_t = sec_pulses_t[sec_pulses_t >= 0]
if ref_pulses_t.size == 0 or sec_pulses_t.size == 0:
return False, delay, 0, 0, 0
# Check pulse correspondence and count TP, FP and FN
tol_s = tol_ms / 1000
tp, fn = 0, 0
for ref_pulse_t in ref_pulses_t:
common_pulses = np.count_nonzero(
(sec_pulses_t >= ref_pulse_t - tol_s)
& (sec_pulses_t <= ref_pulse_t + tol_s)
)
if common_pulses == 0: # no pulses found near the reference pulse -> one FN
fn += 1
elif common_pulses == 1: # one pulse found near the reference pulse -> one TP
tp += 1
# The difference between the n. of secondary pulses and
# the n. of TPs yields the n. of FPs
fp = n_sec - tp
# The pulse trains are the same if TPs > 30%
same1 = tp / ref_pulses_t.size > min_perc
same2 = tp / n_sec > min_perc
return same1 and same2, delay, tp, fp, fn
def find_replicas(
pulse_trains: Signal,
fs: float,
tol_ms: float,
min_perc: float,
) -> dict[int, list[int]]:
"""Given a set of pulse trains, find delayed replicas by checking each pair.
Parameters
----------
pulse_trains : Signal
Set of pulse trains represented as arrays of 1s and 0s with shape (n_samples, n_trains).
fs : float
Sampling frequency of the pulse trains.
tol_ms : float
Tolerance for considering two pulses as synchronized.
min_perc : float
Minimum percentage of common pulses for considering the two pulse trains as the same.
Returns
-------
dict of (int: list of int)
Dictionary containing delayed replicas.
"""
# Convert to array
pulse_trains_array = signal_to_array(pulse_trains)
n_trains = pulse_trains_array.shape[1]
# Convert to dictionary
pulse_train_dict = {i: pulse_trains_array[:, i] for i in range(n_trains)}
# Check each pair
cur_tr = 0
tr_idx = list(pulse_train_dict.keys())
duplicate_tr = {}
while cur_tr < len(tr_idx):
# Find index of replicas by checking synchronization
i = 1
while i < len(tr_idx) - cur_tr:
# Find delay in binarized sources
same = check_delayed_pair(
ref_pulses_bin=pulse_train_dict[tr_idx[cur_tr]],
sec_pulses_bin=pulse_train_dict[tr_idx[cur_tr + i]],
fs=fs,
tol_ms=tol_ms,
min_perc=min_perc,
)[0]
if same:
duplicate_tr[tr_idx[cur_tr]] = duplicate_tr.get(tr_idx[cur_tr], []) + [
tr_idx[cur_tr + i]
]
del tr_idx[cur_tr + i]
else:
i += 1
cur_tr += 1
return duplicate_tr
def _find_threshold(peaks: np.ndarray, th_init: float) -> float:
"""Find optimal spike/noise threshold iteratively."""
max_iter = 10
conv_th = 1e-4
prev_th = new_th = th_init
for i in range(max_iter):
th_h = peaks[peaks >= prev_th].mean()
th_l = peaks[peaks < prev_th].mean()
new_th = (th_h + th_l) / 2
if abs(new_th - prev_th) < conv_th:
break
prev_th = new_th
return new_th
def _otsu_score(x: np.ndarray, th: float) -> float:
"""Compute Otsu's score given an array and a threshold."""
x_bin = np.zeros_like(x)
x_bin[x >= th] = 1
n_tot = x.size
n_bin = np.count_nonzero(x_bin)
w1 = n_bin / n_tot
w0 = 1 - w1
if w1 == 0 or w0 == 0:
return np.inf
x0 = x[x_bin == 0]
x1 = x[x_bin == 1]
var0 = np.var(x0).item()
var1 = np.var(x1).item()
return w0 * var0 + w1 * var1
def detect_spikes(
ic: Signal,
ref_period: int | None = None,
bin_alg: str = "kmeans",
threshold: float | None = None,
compute_sil: bool = False,
seed: int | np.random.Generator | None = None,
) -> tuple[np.ndarray, float, float]:
"""Detect spikes in the given IC.
Parameters
----------
ic : Signal
Estimated IC with shape (n_samples,).
ref_period : int or None, default=None
Refractory period for spike detection.
bin_alg : {"kmeans", "otsu"}, default="kmeans"
Binarization algorithm.
threshold : float or None, default=None
Threshold for spike/noise classification.
compute_sil : bool, default=False
Whether to compute SIL measure or not.
seed : int or Generator or None, default=None
Seed for PRNG.
Returns
-------
ndarray
Location of spikes.
float
Threshold for spike/noise classification.
float
SIL measure.
"""
assert bin_alg in (
"kmeans",
"otsu",
), f'The binarization algorithm can be either "kmeans" or "otsu": the provided one was {bin_alg}.'
# Convert to array
ic_array = signal_to_array(
ic, allow_1d=True
).flatten() # find_peaks expects a 1D array
peaks, _ = signal.find_peaks(ic_array, height=0, distance=ref_period)
ic_peaks = ic_array[peaks]
if threshold is None:
if bin_alg == "kmeans":
centroids, labels = kmeans2(
ic_peaks.reshape(-1, 1), k=2, minit="++", seed=seed
)
high_cluster_idx = np.argmax(centroids) # consider only high peaks
spikes = peaks[labels == high_cluster_idx]
threshold_new = centroids.mean()
else:
th_range = np.linspace(0, ic_peaks.max())
otsu_scores = np.asarray([_otsu_score(ic_peaks, th) for th in th_range])
threshold_new = _find_threshold(
ic_peaks, th_init=th_range[np.argmin(otsu_scores)].item()
)
labels = ic_peaks >= threshold_new
spikes = peaks[labels]
else:
threshold_new = threshold
labels = ic_peaks >= threshold_new
spikes = peaks[labels]
sil = np.nan
if compute_sil:
sil = float(silhouette_score(ic_peaks.reshape(-1, 1), labels))
return spikes, threshold_new, sil
def sparse_to_dense(
spikes_t: dict[str, np.ndarray],
sig_len_s: float,
fs: float,
) -> pd.DataFrame:
"""Convert a DataFrame of spikes from sparse to dense format.
Parameters
----------
spikes_t : dict of {str : ndarray}
Dictionary containing the discharge times for each IC.
sig_len_s : float
Length of the signal (in seconds).
fs : float
Sampling frequency.
Returns
-------
DataFrame
Binary DataFrame with shape (n_samples, n_ic) containing either ones or zeros (spike/not spike).
"""
n_ic = len(spikes_t.keys())
n_samp = ceil(sig_len_s * fs)
spikes_bin = pd.DataFrame(
data=np.zeros(shape=(n_samp, n_ic), dtype="uint8"),
index=np.arange(n_samp) / fs,
columns=list(spikes_t.keys()),
)
for ic, cur_spikes in spikes_t.items():
spikes_bin.loc[cur_spikes, ic] = 1
return spikes_bin
def dense_to_sparse(
spikes_bin: pd.DataFrame,
fs: float,
) -> dict[str, np.ndarray]:
"""Convert a DataFrame of spikes from sparse to dense format.
Parameters
----------
spikes_bin : DataFrame
Binary DataFrame with shape (n_samples, n_ic) containing either ones or zeros (spike/not spike).
fs : float
Sampling frequency.
Returns
-------
dict of {str : ndarray}
Spike times of each ic.
"""
spikes_t = {str(ic): np.flatnonzero(spikes_bin[ic]) / fs for ic in spikes_bin}
return spikes_t