forked from alexhernandezgarcia/activelearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathactivelearning.py
424 lines (388 loc) · 15.5 KB
/
activelearning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
"""
Runnable script with hydra capabilities
"""
import sys
import os
import random
from typing import List
import hydra
from omegaconf import OmegaConf
import torch
from env.mfenv import MultiFidelityEnvWrapper
from utils.multifidelity_toy import make_dataset
import matplotlib.pyplot as plt
from regressor.dkl import Tokenizer
import numpy as np
from utils.common import get_figure_plots
from utils.eval_al_round import evaluate
import pickle
from proxy.mol_oracles.mol_oracle import MoleculeOracle
@hydra.main(config_path="./config", config_name="default")
def main(config):
if config.logger.logdir.root != "./logs":
os.chdir(config.logger.logdir.root)
cwd = os.getcwd()
config.logger.logdir.root = cwd
print(f"\nLogging directory of this run: {cwd}\n")
# Reset seed for job-name generation in multirun jobs
random.seed(None)
# Set other random seeds
set_seeds(config.seed)
# Configure device count to avoid deserialise error
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
print(
"\n \tUser-Defined Warning: Oracles must be in increasing order of fidelity. \n \t Best oracle should be the last one in the config list."
)
# Logger
logger = hydra.utils.instantiate(config.logger, config, _recursive_=False)
N_FID = len(config._oracle_dict)
# check if key true_oracle is in config
if "true_oracle" in config:
true_oracle = hydra.utils.instantiate(
config.true_oracle,
device=config.device,
float_precision=config.float_precision,
)
else:
true_oracle = None
env = hydra.utils.instantiate(
config.env,
oracle=true_oracle,
device=config.device,
float_precision=config.float_precision,
)
if hasattr(env, "vocab"):
tokenizer = Tokenizer(env.vocab)
env.set_tokenizer(tokenizer)
else:
tokenizer = None
if hasattr(env, "rescale"):
rescale = env.rescale
else:
rescale = 1.0
oracles = []
width = (N_FID) * 5
fig, axs = plt.subplots(1, N_FID, figsize=(width, 5))
do_figure = True
for fid in range(1, N_FID + 1):
oracle = hydra.utils.instantiate(
config._oracle_dict[str(fid)],
# required for toy grid oracle setups
oracle=true_oracle,
env=env,
device=config.device,
float_precision=config.float_precision,
)
oracles.append(oracle)
if hasattr(oracle, "plot_true_rewards") and N_FID > 1:
axs[fid - 1] = oracle.plot_true_rewards(env, axs[fid - 1], rescale=rescale)
elif hasattr(oracle, "plot_true_rewards") and N_FID == 1:
axs = oracle.plot_true_rewards(env, axs, rescale=rescale)
else:
do_figure = False
if do_figure:
plt.tight_layout()
plt.show()
plt.close()
logger.log_figure("ground_truth_rewards", fig, use_context=False)
if N_FID > 1:
env = MultiFidelityEnvWrapper(
env,
n_fid=N_FID,
oracle=oracles,
proxy_state_format=config.env.proxy_state_format,
rescale=rescale,
device=config.device,
float_precision=config.float_precision,
fid_embed=config.multifidelity.fid_embed,
fid_embed_dim=config.multifidelity.fid_embed_dim,
)
# Best fidelity
env.env.oracle = oracles[-1]
else:
oracle = oracles[0]
env.oracle = oracle
config_model = None
modes = None
extrema = None
proxy_extrema = None
maximize = None
if "model" in config:
config_model = config.model
if hasattr(oracle, "modes"):
modes = oracle.modes
if hasattr(oracle, "extrema"):
extrema = oracle.extrema
if "budget" in config:
BUDGET = config.budget
else:
if N_FID == 1:
BUDGET = config.al_n_rounds * oracle.cost * config.n_samples
else:
BUDGET = oracles[-1].cost * config.al_n_rounds * config.n_samples
if "proxy" in config and ("mes" or "kg" in config.proxy._target_.lower()):
is_mes = True
else:
is_mes = False
data_handler = hydra.utils.instantiate(
config.dataset,
env=env,
logger=logger,
oracle=oracle,
device=config.device,
float_precision=config.float_precision,
rescale=rescale,
is_mes=is_mes,
)
if logger.resume == False:
cumulative_cost = 0.0
cumulative_sampled_states = []
cumulative_sampled_samples = []
cumulative_sampled_energies = torch.tensor(
[], device=env.device, dtype=env.float
)
cumulative_sampled_fidelities = torch.tensor(
[], device=env.device, dtype=env.float
)
iter = 1
else:
cumulative_cost = logger.resume_dict["cumulative_cost"]
cumulative_sampled_states = logger.resume_dict["cumulative_sampled_states"]
cumulative_sampled_samples = logger.resume_dict["cumulative_sampled_samples"]
cumulative_sampled_energies = logger.resume_dict["cumulative_sampled_energies"]
cumulative_sampled_fidelities = logger.resume_dict[
"cumulative_sampled_fidelities"
]
iter = logger.resume_dict["iter"] + 1
env.reward_norm = env.reward_norm * env.norm_factor
initial_reward_beta = env.reward_beta
initial_reward_norm = env.reward_norm
while cumulative_cost < BUDGET:
# BETA and NORM SCHEDULING
env.reward_beta = initial_reward_beta + (
initial_reward_beta * env.beta_factor * (iter - 1)
)
env.reward_norm = initial_reward_norm / (env.norm_factor ** (iter - 1))
if config.multifidelity.proxy == True:
regressor = hydra.utils.instantiate(
config.regressor,
config_env=config.env,
config_model=config_model,
dataset=data_handler,
device=config.device,
maximize=oracle.maximize,
float_precision=config.float_precision,
_recursive_=False,
logger=logger,
tokenizer=tokenizer,
)
print(f"\nStarting iteration {iter} of active learning")
if logger:
logger.set_context(iter)
if N_FID == 1 or config.multifidelity.proxy == True:
regressor.fit()
if hasattr(regressor, "evaluate_model"):
metrics = {}
(
fig,
test_rmse,
test_nll,
mode_rmse,
mode_nll,
) = regressor.evaluate_model(env, do_figure=config.do_figure)
metrics.update(
{
"proxy_rmse_test": test_rmse,
"proxy_nll_test": test_nll,
"proxy_rmse_modes": mode_rmse,
"proxy_nll_modes": mode_nll,
}
)
if fig is not None:
plt.tight_layout()
plt.show()
plt.close()
if isinstance(fig, list) == False:
logger.log_figure("gp_predictions", fig, use_context=True)
else:
logger.log_figure("gp_predictions", fig[0], use_context=True)
logger.log_figure("uncertainties", fig[1], use_context=True)
logger.log_metrics(metrics, use_context=False)
if "proxy" in config:
proxy = hydra.utils.instantiate(
config.proxy,
regressor=regressor,
device=config.device,
float_precision=config.float_precision,
logger=logger,
oracle=oracles,
env=env,
)
else:
proxy = None
env.set_proxy(proxy)
gflownet = hydra.utils.instantiate(
config.gflownet,
env=env,
buffer=config.env.buffer,
logger=logger,
device=config.device,
float_precision=config.float_precision,
)
# TODO: rename gflownet to sampler once we have other sampling techniques ready
gflownet.train()
if config.n_samples > 0 and config.n_samples <= 1e5:
states, times = gflownet.sample_batch(
env, config.n_samples * 5, train=False
)
if isinstance(states[0], list):
states_tensor = torch.tensor(states)
else:
states_tensor = torch.vstack(states)
states_tensor = states_tensor.unique(dim=0)
if isinstance(states[0], list):
# for envs in which we want list of lists
states = states_tensor.tolist()
else:
# for the envs in which we want list of tensors
states = list(states_tensor)
state_proxy = env.statebatch2proxy(states)
if isinstance(state_proxy, list):
state_proxy = torch.FloatTensor(state_proxy).to(config.device)
if proxy is not None:
scores = env.proxy(state_proxy)
else:
scores, _ = regressor.get_predictions(env, states, denorm=True)
num_pick = min(config.n_samples, len(states))
if proxy is not None:
maximize = proxy.maximize
if maximize is None:
if data_handler.target_factor == -1:
maximize = not oracle.maximize
else:
maximize = oracle.maximize
idx_pick = torch.argsort(scores, descending=maximize)[:num_pick].tolist()
picked_states = [states[i] for i in idx_pick]
if extrema is not None:
proxy_extrema, _ = regressor.get_predictions(
env, picked_states[0], denorm=True
)
if N_FID > 1:
picked_samples, picked_fidelity = env.statebatch2oracle(picked_states)
picked_energies = env.call_oracle_per_fidelity(
picked_samples, picked_fidelity
)
energies_for_evaluation = oracle(picked_samples)
if isinstance(oracle, MoleculeOracle):
hf_idxNaN = torch.isnan(energies_for_evaluation)
cf_idxNaN = torch.isnan(picked_energies)
idxNaN = hf_idxNaN | cf_idxNaN
updated_picked_samples = []
updated_picked_states = []
for i in range(len(picked_samples)):
if idxNaN[i]:
continue
else:
updated_picked_samples.append(picked_samples[i])
updated_picked_states.append(picked_states[i])
picked_energies = picked_energies[~idxNaN]
energies_for_evaluation = energies_for_evaluation[~idxNaN]
picked_samples = updated_picked_samples
picked_states = updated_picked_states
else:
picked_samples = env.statebatch2oracle(picked_states)
picked_energies = env.oracle(picked_samples)
if isinstance(oracle, MoleculeOracle):
idxNaN = torch.isnan(picked_energies)
updated_picked_samples = []
updated_picked_states = []
for i in range(len(picked_samples)):
if idxNaN[i]:
continue
else:
updated_picked_samples.append(picked_samples[i])
updated_picked_states.append(picked_states[i])
picked_energies = picked_energies[~idxNaN]
picked_samples = updated_picked_samples
picked_states = updated_picked_states
energies_for_evaluation = picked_energies
picked_fidelity = None
if isinstance(picked_samples, torch.Tensor):
# For when statebatch2oracle = statebatch2state in Grid and it returns a tensor of states instead
picked_samples = picked_samples.tolist()
cumulative_sampled_states.extend(picked_states)
cumulative_sampled_samples.extend(picked_samples)
cumulative_sampled_energies = torch.cat(
(cumulative_sampled_energies, energies_for_evaluation)
)
if picked_fidelity is not None:
cumulative_sampled_fidelities = torch.cat(
(cumulative_sampled_fidelities, picked_fidelity)
)
get_figure_plots(
env,
cumulative_sampled_states,
cumulative_sampled_energies,
cumulative_sampled_fidelities,
logger,
title="Cumulative Sampled Dataset",
key="cum_sampled_dataset",
use_context=True,
)
if hasattr(env, "get_cost"):
cost_al_round = env.get_cost(picked_states, picked_fidelity)
cumulative_cost += np.sum(cost_al_round)
avg_cost = np.mean(cost_al_round)
logger.log_metrics({"post_al_avg_cost": avg_cost}, use_context=False)
else:
cost_al_round = torch.ones(len(picked_states))
if hasattr(oracle, "cost"):
cost_al_round = cost_al_round * oracle.cost
avg_cost = torch.mean(cost_al_round).detach().cpu().numpy()
cumulative_cost += torch.sum(cost_al_round).detach().cpu().numpy()
logger.log_metrics({"post_al_avg_cost": avg_cost}, use_context=False)
if config.env.proxy_state_format != "oracle":
evaluate(
samples=cumulative_sampled_samples,
energies=cumulative_sampled_energies,
maximize=oracle.maximize,
cumulative_cost=cumulative_cost,
logger=logger,
env=env,
modes=modes,
proxy_extrema=proxy_extrema,
extrema=extrema,
)
if N_FID == 1 or config.multifidelity.proxy == True:
data_handler.update_dataset(
picked_states, picked_energies.tolist(), picked_fidelity
)
cumulative_stats = {
"cumulative_sampled_states": cumulative_sampled_states,
"cumulative_sampled_samples": cumulative_sampled_samples,
"cumulative_sampled_energies": cumulative_sampled_energies,
"cumulative_sampled_fidelities": cumulative_sampled_fidelities,
"cumulative_cost": cumulative_cost,
"iter": iter,
}
if logger.do.online:
path = os.path.join(logger.wandb.run.dir, "cumulative_stats.pkl")
with open(path, "wb") as f:
pickle.dump(cumulative_stats, f)
del gflownet
del proxy
del regressor
env._test_traj_list = []
env._test_traj_actions_list = []
iter += 1
def set_seeds(seed):
import torch
import numpy as np
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if __name__ == "__main__":
main()
sys.exit()