forked from catid/cm256
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcm256.cpp
603 lines (487 loc) · 18.7 KB
/
cm256.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
/*
Copyright (c) 2015 Christopher A. Taylor. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of CM256 nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#include "cm256.h"
/*
GF(256) Cauchy Matrix Overview
As described on Wikipedia, each element of a normal Cauchy matrix is defined as:
a_ij = 1 / (x_i - y_j)
The arrays x_i and y_j are vector parameters of the matrix.
The values in x_i cannot be reused in y_j.
Moving beyond the Wikipedia...
(1) Number of rows (R) is the range of i, and number of columns (C) is the range of j.
(2) Being able to select x_i and y_j makes Cauchy matrices more flexible in practice
than Vandermonde matrices, which only have one parameter per row.
(3) Cauchy matrices are always invertible, AKA always full rank, AKA when treated as
as linear system y = M*x, the linear system has a single solution.
(4) A Cauchy matrix concatenated below a square CxC identity matrix always has rank C,
Meaning that any R rows can be eliminated from the concatenated matrix and the
matrix will still be invertible. This is how Reed-Solomon erasure codes work.
(5) Any row or column can be multiplied by non-zero values, and the resulting matrix
is still full rank. This is true for any matrix, since it is effectively the same
as pre and post multiplying by diagonal matrices, which are always invertible.
(6) Matrix elements with a value of 1 are much faster to operate on than other values.
For instance a matrix of [1, 1, 1, 1, 1] is invertible and much faster for various
purposes than [2, 2, 2, 2, 2].
(7) For GF(256) matrices, the symbols in x_i and y_j are selected from the numbers
0...255, and so the number of rows + number of columns may not exceed 256.
Note that values in x_i and y_j may not be reused as stated above.
In summary, Cauchy matrices
are preferred over Vandermonde matrices. (2)
are great for MDS erasure codes. (3) and (4)
should be optimized to include more 1 elements. (5) and (6)
have a limited size in GF(256), rows+cols <= 256. (7)
*/
//-----------------------------------------------------------------------------
// Initialization
extern "C" int cm256_init_(int version)
{
if (version != CM256_VERSION)
{
// User's header does not match library version
return -10;
}
// Return error code from GF(256) init if required
return gf256_init();
}
/*
Selected Cauchy Matrix Form
The matrix consists of elements a_ij, where i = row, j = column.
a_ij = 1 / (x_i - y_j), where x_i and y_j are sets of GF(256) values
that do not intersect.
We select x_i and y_j to just be incrementing numbers for the
purposes of this library. Further optimizations may yield matrices
with more 1 elements, but the benefit seems relatively small.
The x_i values range from 0...(originalCount - 1).
The y_j values range from originalCount...(originalCount + recoveryCount - 1).
We then improve the Cauchy matrix by dividing each column by the
first row element of that column. The result is an invertible
matrix that has all 1 elements in the first row. This is equivalent
to a rotated Vandermonde matrix, so we could have used one of those.
The advantage of doing this is that operations involving the first
row will be extremely fast (just memory XOR), so the decoder can
be optimized to take advantage of the shortcut when the first
recovery row can be used.
First row element of Cauchy matrix for each column:
a_0j = 1 / (x_0 - y_j) = 1 / (x_0 - y_j)
Our Cauchy matrix sets first row to ones, so:
a_ij = (1 / (x_i - y_j)) / a_0j
a_ij = (y_j - x_0) / (x_i - y_j)
a_ij = (y_j + x_0) div (x_i + y_j) in GF(256)
*/
// This function generates each matrix element based on x_i, x_0, y_j
// Note that for x_i == x_0, this will return 1, so it is better to unroll out the first row.
static GF256_FORCE_INLINE unsigned char GetMatrixElement(unsigned char x_i, unsigned char x_0, unsigned char y_j)
{
return gf256_div(gf256_add(y_j, x_0), gf256_add(x_i, y_j));
}
//-----------------------------------------------------------------------------
// Encoding
extern "C" void cm256_encode_block(
cm256_encoder_params params, // Encoder parameters
cm256_block* originals, // Array of pointers to original blocks
int recoveryBlockIndex, // Return value from cm256_get_recovery_block_index()
void* recoveryBlock) // Output recovery block
{
// If only one block of input data,
if (params.OriginalCount == 1)
{
// No meaningful operation here, degenerate to outputting the same data each time.
memcpy(recoveryBlock, originals[0].Block, params.BlockBytes);
return;
}
// else OriginalCount >= 2:
// Unroll first row of recovery matrix:
// The matrix we generate for the first row is all ones,
// so it is merely a parity of the original data.
if (recoveryBlockIndex == params.OriginalCount)
{
gf256_addset_mem(recoveryBlock, originals[0].Block, originals[1].Block, params.BlockBytes);
for (int j = 2; j < params.OriginalCount; ++j)
{
gf256_add_mem(recoveryBlock, originals[j].Block, params.BlockBytes);
}
return;
}
// TBD: Faster algorithms seem to exist for computing this matrix-vector product.
// Start the x_0 values arbitrarily from the original count.
const uint8_t x_0 = static_cast<uint8_t>(params.OriginalCount);
// For other rows:
{
const uint8_t x_i = static_cast<uint8_t>(recoveryBlockIndex);
// Unroll first operation for speed
{
const uint8_t y_0 = 0;
const uint8_t matrixElement = GetMatrixElement(x_i, x_0, y_0);
gf256_mul_mem(recoveryBlock, originals[0].Block, matrixElement, params.BlockBytes);
}
// For each original data column,
for (int j = 1; j < params.OriginalCount; ++j)
{
const uint8_t y_j = static_cast<uint8_t>(j);
const uint8_t matrixElement = GetMatrixElement(x_i, x_0, y_j);
gf256_muladd_mem(recoveryBlock, matrixElement, originals[j].Block, params.BlockBytes);
}
}
}
extern "C" int cm256_encode(
cm256_encoder_params params, // Encoder params
cm256_block* originals, // Array of pointers to original blocks
void* recoveryBlocks) // Output recovery blocks end-to-end
{
// Validate input:
if (params.OriginalCount <= 0 ||
params.RecoveryCount <= 0 ||
params.BlockBytes <= 0)
{
return -1;
}
if (params.OriginalCount + params.RecoveryCount > 256)
{
return -2;
}
if (!originals || !recoveryBlocks)
{
return -3;
}
uint8_t* recoveryBlock = static_cast<uint8_t*>(recoveryBlocks);
for (int block = 0; block < params.RecoveryCount; ++block, recoveryBlock += params.BlockBytes)
{
cm256_encode_block(params, originals, (params.OriginalCount + block), recoveryBlock);
}
return 0;
}
//-----------------------------------------------------------------------------
// Decoding
struct CM256Decoder
{
// Encode parameters
cm256_encoder_params Params;
// Recovery blocks
cm256_block* Recovery[256];
int RecoveryCount;
// Original blocks
cm256_block* Original[256];
int OriginalCount;
// Row indices that were erased
uint8_t ErasuresIndices[256];
// Initialize the decoder
bool Initialize(cm256_encoder_params& params, cm256_block* blocks);
// Decode m=1 case
void DecodeM1();
// Decode for m>1 case
void Decode();
// Generate the LU decomposition of the matrix
void GenerateLDUDecomposition(uint8_t* matrix_L, uint8_t* diag_D, uint8_t* matrix_U);
};
bool CM256Decoder::Initialize(cm256_encoder_params& params, cm256_block* blocks)
{
Params = params;
cm256_block* block = blocks;
OriginalCount = 0;
RecoveryCount = 0;
// Initialize erasures to zeros
for (int ii = 0; ii < params.OriginalCount; ++ii)
{
ErasuresIndices[ii] = 0;
}
// For each input block,
for (int ii = 0; ii < params.OriginalCount; ++ii, ++block)
{
int row = block->Index;
// If it is an original block,
if (row < params.OriginalCount)
{
Original[OriginalCount++] = block;
if (ErasuresIndices[row] != 0)
{
// Error out if two row indices repeat
return false;
}
ErasuresIndices[row] = 1;
}
else
{
Recovery[RecoveryCount++] = block;
}
}
// Identify erasures
for (int ii = 0, indexCount = 0; ii < 256; ++ii)
{
if (!ErasuresIndices[ii])
{
ErasuresIndices[indexCount] = static_cast<uint8_t>( ii );
if (++indexCount >= RecoveryCount)
{
break;
}
}
}
return true;
}
void CM256Decoder::DecodeM1()
{
// XOR all other blocks into the recovery block
uint8_t* outBlock = static_cast<uint8_t*>(Recovery[0]->Block);
const uint8_t* inBlock = nullptr;
// For each block,
for (int ii = 0; ii < OriginalCount; ++ii)
{
const uint8_t* inBlock2 = static_cast<const uint8_t*>(Original[ii]->Block);
if (!inBlock)
{
inBlock = inBlock2;
}
else
{
// outBlock ^= inBlock ^ inBlock2
gf256_add2_mem(outBlock, inBlock, inBlock2, Params.BlockBytes);
inBlock = nullptr;
}
}
// Complete XORs
if (inBlock)
{
gf256_add_mem(outBlock, inBlock, Params.BlockBytes);
}
// Recover the index it corresponds to
Recovery[0]->Index = ErasuresIndices[0];
}
// Generate the LU decomposition of the matrix
void CM256Decoder::GenerateLDUDecomposition(uint8_t* matrix_L, uint8_t* diag_D, uint8_t* matrix_U)
{
// Schur-type-direct-Cauchy algorithm 2.5 from
// "Pivoting and Backward Stability of Fast Algorithms for Solving Cauchy Linear Equations"
// T. Boros, T. Kailath, V. Olshevsky
// Modified for practical use. I folded the diagonal parts of U/L matrices into the
// diagonal one to reduce the number of multiplications to perform against the input data,
// and organized the triangle matrices in memory to allow for faster SSE3 GF multiplications.
// Matrix size NxN
const int N = RecoveryCount;
// Generators
uint8_t g[256], b[256];
for (int i = 0; i < N; ++i)
{
g[i] = 1;
b[i] = 1;
}
// Temporary buffer for rotated row of U matrix
// This allows for faster GF bulk multiplication
uint8_t rotated_row_U[256];
uint8_t* last_U = matrix_U + ((N - 1) * N) / 2 - 1;
int firstOffset_U = 0;
// Start the x_0 values arbitrarily from the original count.
const uint8_t x_0 = static_cast<uint8_t>(Params.OriginalCount);
// Unrolling k = 0 just makes it slower for some reason.
for (int k = 0; k < N - 1; ++k)
{
const uint8_t x_k = Recovery[k]->Index;
const uint8_t y_k = ErasuresIndices[k];
// D_kk = (x_k + y_k)
// L_kk = g[k] / (x_k + y_k)
// U_kk = b[k] * (x_0 + y_k) / (x_k + y_k)
const uint8_t D_kk = gf256_add(x_k, y_k);
const uint8_t L_kk = gf256_div(g[k], D_kk);
const uint8_t U_kk = gf256_mul(gf256_div(b[k], D_kk), gf256_add(x_0, y_k));
// diag_D[k] = D_kk * L_kk * U_kk
diag_D[k] = gf256_mul(D_kk, gf256_mul(L_kk, U_kk));
// Computing the k-th row of L and U
uint8_t* row_L = matrix_L;
uint8_t* row_U = rotated_row_U;
for (int j = k + 1; j < N; ++j)
{
const uint8_t x_j = Recovery[j]->Index;
const uint8_t y_j = ErasuresIndices[j];
// L_jk = g[j] / (x_j + y_k)
// U_kj = b[j] / (x_k + y_j)
const uint8_t L_jk = gf256_div(g[j], gf256_add(x_j, y_k));
const uint8_t U_kj = gf256_div(b[j], gf256_add(x_k, y_j));
*matrix_L++ = L_jk;
*row_U++ = U_kj;
// g[j] = g[j] * (x_j + x_k) / (x_j + y_k)
// b[j] = b[j] * (y_j + y_k) / (y_j + x_k)
g[j] = gf256_mul(g[j], gf256_div(gf256_add(x_j, x_k), gf256_add(x_j, y_k)));
b[j] = gf256_mul(b[j], gf256_div(gf256_add(y_j, y_k), gf256_add(y_j, x_k)));
}
// Do these row/column divisions in bulk for speed.
// L_jk /= L_kk
// U_kj /= U_kk
const int count = N - (k + 1);
gf256_div_mem(row_L, row_L, L_kk, count);
gf256_div_mem(rotated_row_U, rotated_row_U, U_kk, count);
// Copy U matrix row into place in memory.
uint8_t* output_U = last_U + firstOffset_U;
row_U = rotated_row_U;
for (int j = k + 1; j < N; ++j)
{
*output_U = *row_U++;
output_U -= j;
}
firstOffset_U -= k + 2;
}
// Multiply diagonal matrix into U
uint8_t* row_U = matrix_U;
for (int j = N - 1; j > 0; --j)
{
const uint8_t y_j = ErasuresIndices[j];
const int count = j;
gf256_mul_mem(row_U, row_U, gf256_add(x_0, y_j), count);
row_U += count;
}
const uint8_t x_n = Recovery[N - 1]->Index;
const uint8_t y_n = ErasuresIndices[N - 1];
// D_nn = 1 / (x_n + y_n)
// L_nn = g[N-1]
// U_nn = b[N-1] * (x_0 + y_n)
const uint8_t L_nn = g[N - 1];
const uint8_t U_nn = gf256_mul(b[N - 1], gf256_add(x_0, y_n));
// diag_D[N-1] = L_nn * D_nn * U_nn
diag_D[N - 1] = gf256_div(gf256_mul(L_nn, U_nn), gf256_add(x_n, y_n));
}
void CM256Decoder::Decode()
{
// Matrix size is NxN, where N is the number of recovery blocks used.
const int N = RecoveryCount;
// Start the x_0 values arbitrarily from the original count.
const uint8_t x_0 = static_cast<uint8_t>(Params.OriginalCount);
// Eliminate original data from the the recovery rows
for (int originalIndex = 0; originalIndex < OriginalCount; ++originalIndex)
{
const uint8_t* inBlock = static_cast<const uint8_t*>(Original[originalIndex]->Block);
const uint8_t inRow = Original[originalIndex]->Index;
for (int recoveryIndex = 0; recoveryIndex < N; ++recoveryIndex)
{
uint8_t* outBlock = static_cast<uint8_t*>(Recovery[recoveryIndex]->Block);
const uint8_t x_i = Recovery[recoveryIndex]->Index;
const uint8_t y_j = inRow;
const uint8_t matrixElement = GetMatrixElement(x_i, x_0, y_j);
gf256_muladd_mem(outBlock, matrixElement, inBlock, Params.BlockBytes);
}
}
// Allocate matrix
static const int StackAllocSize = 2048;
uint8_t stackMatrix[StackAllocSize];
uint8_t* dynamicMatrix = nullptr;
uint8_t* matrix = stackMatrix;
const int requiredSpace = N * N;
if (requiredSpace > StackAllocSize)
{
dynamicMatrix = new uint8_t[requiredSpace];
matrix = dynamicMatrix;
}
/*
Compute matrix decomposition:
G = L * D * U
L is lower-triangular, diagonal is all ones.
D is a diagonal matrix.
U is upper-triangular, diagonal is all ones.
*/
uint8_t* matrix_U = matrix;
uint8_t* diag_D = matrix_U + (N - 1) * N / 2;
uint8_t* matrix_L = diag_D + N;
GenerateLDUDecomposition(matrix_L, diag_D, matrix_U);
/*
Eliminate lower left triangle.
*/
// For each column,
for (int j = 0; j < N - 1; ++j)
{
const void* block_j = Recovery[j]->Block;
// For each row,
for (int i = j + 1; i < N; ++i)
{
void* block_i = Recovery[i]->Block;
const uint8_t c_ij = *matrix_L++; // Matrix elements are stored column-first, top-down.
gf256_muladd_mem(block_i, c_ij, block_j, Params.BlockBytes);
}
}
/*
Eliminate diagonal.
*/
for (int i = 0; i < N; ++i)
{
void* block = Recovery[i]->Block;
Recovery[i]->Index = ErasuresIndices[i];
gf256_div_mem(block, block, diag_D[i], Params.BlockBytes);
}
/*
Eliminate upper right triangle.
*/
for (int j = N - 1; j >= 1; --j)
{
const void* block_j = Recovery[j]->Block;
for (int i = j - 1; i >= 0; --i)
{
void* block_i = Recovery[i]->Block;
const uint8_t c_ij = *matrix_U++; // Matrix elements are stored column-first, bottom-up.
gf256_muladd_mem(block_i, c_ij, block_j, Params.BlockBytes);
}
}
delete[] dynamicMatrix;
}
extern "C" int cm256_decode(
cm256_encoder_params params, // Encoder params
cm256_block* blocks) // Array of 'originalCount' blocks as described above
{
if (params.OriginalCount <= 0 ||
params.RecoveryCount <= 0 ||
params.BlockBytes <= 0)
{
return -1;
}
if (params.OriginalCount + params.RecoveryCount > 256)
{
return -2;
}
if (!blocks)
{
return -3;
}
// If there is only one block,
if (params.OriginalCount == 1)
{
// It is the same block repeated
blocks[0].Index = 0;
return 0;
}
CM256Decoder state;
if (!state.Initialize(params, blocks))
{
return -5;
}
// If nothing is erased,
if (state.RecoveryCount <= 0)
{
return 0;
}
// If m=1,
if (params.RecoveryCount == 1)
{
state.DecodeM1();
return 0;
}
// Decode for m>1
state.Decode();
return 0;
}