-
Notifications
You must be signed in to change notification settings - Fork 0
/
motion_detection.py
59 lines (44 loc) · 1.64 KB
/
motion_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# importing the libraries
import cv2
# reading the video
cap = cv2.VideoCapture('cctv.mp4')
# storing the width and the height of the frame
frame_width = int( cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height =int( cap.get( cv2.CAP_PROP_FRAME_HEIGHT))
# reading the first 2 frames
ret, frame1 = cap.read()
ret, frame2 = cap.read()
print(frame1.shape)
# processing the video
while cap.isOpened():
# calculating the difference between the two frames
diff = cv2.absdiff(frame1, frame2)
# converting the BGR to GRAY scale
gray = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY)
# blurring the image
blur = cv2.GaussianBlur(gray, (5,5), 0)
# threshing the image and dilating to find contours
_, thresh = cv2.threshold(blur, 20, 255, cv2.THRESH_BINARY)
dilated = cv2.dilate(thresh, None, iterations=3)
contours, _ = cv2.findContours(dilated, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# modifying the contours by drawing a rectangle
for contour in contours:
(x, y, w, h) = cv2.boundingRect(contour)
if cv2.contourArea(contour) < 1500:
continue
cv2.rectangle(frame1, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.putText(frame1, "Status: {}".format('Movement'), (10, 20), cv2.FONT_HERSHEY_SIMPLEX,
1, (0, 0, 255), 3)
# resizing the frame
image = cv2.resize(frame1, (1280,720))
# displaying the frame
cv2.imshow("feed", frame1)
# modifying the frames
frame1 = frame2
ret, frame2 = cap.read()
# break condition `Esc`
if cv2.waitKey(40) == 27:
break
# freeing the resources
cv2.destroyAllWindows()
cap.release()