-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrain.py
70 lines (53 loc) · 2.3 KB
/
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# -*- coding: utf-8 -*-
"""
@Author: Su Lu
@Date: 2021-04-06 12:19:53
"""
import torch
from torch import nn
from torch.optim import SGD
from torch.optim.lr_scheduler import MultiStepLR
from Test import test
def train(args, train_data_loader, validate_data_loader, model, model_save_path):
optimizer = SGD([
{'params':model.get_network_params(), 'lr': args.lr_network},
{'params':model.get_other_params(), 'lr':args.lr}
], weight_decay=args.wd, momentum=args.mo, nesterov=True)
scheduler = MultiStepLR(optimizer, args.point, args.gamma)
training_loss_list = []
validating_accuracy_list = []
best_validating_accuracy = 0
training_loss = 0
for task_index, task in enumerate(train_data_loader):
model.train()
images, labels = task
images = images.float().cuda(args.devices[0])
labels = labels.long().cuda(args.devices[0])
logits = model.forward(images)
query_targets = torch.arange(args.N).repeat(args.Q).long()
query_targets = query_targets.cuda(args.devices[0])
loss = nn.CrossEntropyLoss()(logits, query_targets)
training_loss += loss.cpu().item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (task_index + 1) % args.episode_gap == 0:
training_loss /= args.episode_gap
validating_accuracy = test(args, validate_data_loader, model)
training_loss_list.append(training_loss)
validating_accuracy_list.append(validating_accuracy)
print('epoch %d finish: training loss = %f, validating acc = %f' % (
(task_index + 1) / args.episode_gap, training_loss, validating_accuracy
))
if not args.flag_debug:
if validating_accuracy > best_validating_accuracy:
best_validating_accuracy = validating_accuracy
record = {
'state_dict': model.state_dict(),
'validating_accuracy': validating_accuracy,
'epoch': (task_index + 1) / args.episode_gap
}
torch.save(record, model_save_path)
training_loss = 0
scheduler.step()
return training_loss_list, validating_accuracy_list