-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutilities.py
172 lines (147 loc) · 5.81 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# -----------------------------------------------------------------------------
# This file contains several utility functions for reproducing results
# of the WWL paper
#
# October 2019, M. Togninalli
# -----------------------------------------------------------------------------
import numpy as np
import os
import igraph as ig
from scipy.sparse import csr_matrix
import torch
# import dgl
# from dgl.data import TUDataset
# from torch_geometric.datasets import TUDataset
from myTUDataset import TUDataset
from torch_geometric.transforms import ToDense, ToSparseTensor
from sklearn.model_selection import ParameterGrid, StratifiedKFold
from sklearn.model_selection._validation import _fit_and_score
from sklearn.base import clone
from sklearn.metrics import make_scorer, accuracy_score
#################
# File loaders
#################
def load_continuous_graphs(dataset_name):
data = TUDataset(dataset_name)
graphs, labels = zip(*[data[i] for i in range(len(data))])
labels = torch.tensor(labels).numpy()
# initialize
node_labels = []
node_features = []
adj_mat = []
n_nodes = []
edge_features = []
# Iterate across graphs and load initial node features
for graph in graphs:
# Load features
node_labels.append(graph.ndata['node_labels'].numpy().astype(float))
if graph.ndata.get('node_attr') != None:
node_features.append(graph.ndata['node_attr'].numpy().astype(float))
else:
node_features.append(graph.ndata['node_labels'].numpy().astype(float))
adj_mat.append(graph.adj().to_dense().numpy())
n_nodes.append(graph.num_nodes())
if graph.edata.get('node_labels') != None:
# Edge features
edges_s = graph.edges(form='all')[0].numpy()
edges_e = graph.edges(form='all')[1].numpy()
edges_weights = graph.edata['node_labels'].numpy().reshape(-1)
weight_cur = csr_matrix((edges_weights, (edges_s,edges_e))).toarray()
edge_features.append(weight_cur)
n_nodes = np.asarray(n_nodes)
node_labels = np.asarray(node_labels)
node_features = np.asarray(node_features)
edge_features = np.asarray(edge_features)
return node_labels, node_features, adj_mat, n_nodes, edge_features, labels
def load_matrices(directory):
'''
Loads all the wasserstein matrices in the directory.
'''
files = [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory,f))]
wass_matrices = []
hs = []
for f in sorted(files):
hs.append(int(f.split('.npy')[0].split('it')[-1])) # Hoping not to have h > 9 !
wass_matrices.append(np.load(os.path.join(directory,f)))
return wass_matrices, hs
##################
# Graph processing
##################
# def create_adj_avg(adj_cur):
# '''
# create adjacency
# '''
# deg = np.sum(adj_cur, axis = 1)
# deg = np.asarray(deg).reshape(-1)
# deg[deg!=1] -= 1
# deg = 1/deg
# deg_mat = np.diag(deg)
# adj_cur = adj_cur.dot(deg_mat.T).T
# return adj_cur
def create_weight_avg(adj_cur, weight_cur=None):
deg = np.sum(adj_cur, axis = 1)
deg = np.asarray(deg).reshape(-1)
deg[deg!=1] -= 1
deg = 1/deg
deg_mat = np.diag(deg)
if weight_cur is None:
adj_cur = adj_cur.dot(deg_mat.T).T
return adj_cur
else:
weight_cur = weight_cur.dot(deg_mat.T).T
return weight_cur
def create_labels_seq_cont(node_features, adj_mat, h, edge_features=None):
'''
create label sequence for continuously attributed graphs
'''
n_graphs = len(node_features)
labels_sequence = []
for i in range(n_graphs):
graph_feat = []
for it in range(h+1):
if it == 0:
graph_feat.append(node_features[i])
else:
adj_cur = adj_mat[i]+np.identity(adj_mat[i].shape[0])
# adj_cur = create_adj_avg(adj_cur)
if edge_features is None:
weight_cur = create_weight_avg(adj_cur)
else:
weight_cur = create_weight_avg(adj_cur, edge_features[i])
np.fill_diagonal(weight_cur, 0)
graph_feat_cur = 0.5*(np.dot(weight_cur, graph_feat[it-1]) + graph_feat[it-1])
graph_feat.append(graph_feat_cur)
labels_sequence.append(np.concatenate(graph_feat, axis = 1))
if i % 100 == 0:
print(f'Processed {i} graphs out of {n_graphs}')
return labels_sequence
#######################
# Hyperparameter search
#######################
def custom_grid_search_cv(model, param_grid, precomputed_kernels, y, cv=5):
'''
Custom grid search based on the sklearn grid search for an array of precomputed kernels
'''
# 1. Stratified K-fold
cv = StratifiedKFold(n_splits=cv, shuffle=False)
results = []
for train_index, test_index in cv.split(precomputed_kernels[0], y):
split_results = []
params = [] # list of dict, its the same for every split
# run over the kernels first
for K_idx, K in enumerate(precomputed_kernels):
# Run over parameters
for p in list(ParameterGrid(param_grid)):
sc = _fit_and_score(clone(model), K, y, scorer=make_scorer(accuracy_score),
train=train_index, test=test_index, verbose=0, parameters=p, fit_params=None)
split_results.append(sc)
params.append({'K_idx': K_idx, 'params': p})
results.append(split_results)
# Collect results and average
results = np.array(results)
fin_results = results.mean(axis=0)
# select the best results
best_idx = np.argmax(fin_results)
# Return the fitted model and the best_parameters
ret_model = clone(model).set_params(**params[best_idx]['params'])
return ret_model.fit(precomputed_kernels[params[best_idx]['K_idx']], y), params[best_idx]