From 15e934d062f30eeff70cf3ee8baae1a234ad9cfe Mon Sep 17 00:00:00 2001 From: nkosinathintuli Date: Wed, 9 Oct 2024 15:31:32 +0200 Subject: [PATCH] pushing latest changes to codespaces --- hierarchical-nsa.ipynb | 322 ++++++++++++++++++++++++-- simulation_data/pairwise_matrices.csv | 2 +- 2 files changed, 302 insertions(+), 22 deletions(-) diff --git a/hierarchical-nsa.ipynb b/hierarchical-nsa.ipynb index 259d0fd..8a0474d 100644 --- a/hierarchical-nsa.ipynb +++ b/hierarchical-nsa.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 19, + "execution_count": 21, "id": "b5d9267d-024e-46ec-8225-8c0c1a5667d4", "metadata": {}, "outputs": [], @@ -37,7 +37,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 22, "id": "ca28e724-90a6-4fb6-81ac-ed6a91ee1e88", "metadata": {}, "outputs": [], @@ -89,7 +89,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 23, "id": "6a41090a-20d1-47c9-aab7-d6f84692dbd5", "metadata": {}, "outputs": [], @@ -132,7 +132,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 24, "id": "e2fe292e-b70b-435e-8429-4313d15a2078", "metadata": {}, "outputs": [], @@ -187,7 +187,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 25, "id": "d47eb935-d633-4810-b9f3-fe62e9efb832", "metadata": {}, "outputs": [], @@ -255,7 +255,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 26, "id": "ae5fa8b6-4113-421a-9112-10d1e270a8f3", "metadata": {}, "outputs": [], @@ -297,7 +297,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 27, "id": "2e4f5e3f-31ee-48a6-aeee-b87de52da99c", "metadata": {}, "outputs": [], @@ -338,7 +338,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 28, "id": "da5ed195-d7d2-4cb3-a799-a7b119ad7dbd", "metadata": {}, "outputs": [], @@ -356,7 +356,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 29, "id": "eb58539e-692c-43a9-8339-85cfcaae7c7b", "metadata": {}, "outputs": [], @@ -372,7 +372,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 30, "id": "a44a2674-b7c7-402a-a929-705049ab77d4", "metadata": {}, "outputs": [], @@ -398,12 +398,14 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 53, "id": "21390f8d-04d4-4658-9dc2-9d8a53bda734", "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv(file_path+\"/pairwise_matrices.csv\",header = None)\n", + "services = df[0].iloc[[0, 7, 14, 21]].values\n", + "\n", "df.dropna(inplace = True)\n", "\n", "services_weights = np.zeros((4,4)) # 4 services, 4 criteria\n", @@ -412,7 +414,8 @@ "\n", "for i in range(services_weights.shape[0]):\n", " df_service = df.iloc[rows_per_matrix * i : (rows_per_matrix * (i+1))].iloc[1:5,1:5] # if i<3 else 0\n", - " services_weights[i] = ahp_weights(df_service.values.astype(np.float64))" + " services_weights[i] = ahp_weights(df_service.values.astype(np.float64))\n", + "\n" ] }, { @@ -425,10 +428,246 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 40, "id": "18c9de10-b8e6-4d71-b2bf-2cb56d56292d", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
QPC
User
1LowLowLow
2LowLowMedium
3LowLowHigh
4LowMediumLow
5LowMediumMedium
6LowMediumHigh
7LowHighLow
8LowHighMedium
9LowHighHigh
10MediumLowLow
11MediumLowMedium
12MediumLowHigh
13MediumMediumLow
14MediumMediumMedium
15MediumMediumHigh
16MediumHighLow
17MediumHighMedium
18MediumHighHigh
19HighLowLow
20HighLowMedium
21HighLowHigh
22HighMediumLow
23HighMediumMedium
24HighMediumHigh
25HighHighLow
26HighHighMedium
27HighHighHigh
\n", + "
" + ], + "text/plain": [ + " Q P C\n", + "User \n", + "1 Low Low Low\n", + "2 Low Low Medium\n", + "3 Low Low High\n", + "4 Low Medium Low\n", + "5 Low Medium Medium\n", + "6 Low Medium High\n", + "7 Low High Low\n", + "8 Low High Medium\n", + "9 Low High High\n", + "10 Medium Low Low\n", + "11 Medium Low Medium\n", + "12 Medium Low High\n", + "13 Medium Medium Low\n", + "14 Medium Medium Medium\n", + "15 Medium Medium High\n", + "16 Medium High Low\n", + "17 Medium High Medium\n", + "18 Medium High High\n", + "19 High Low Low\n", + "20 High Low Medium\n", + "21 High Low High\n", + "22 High Medium Low\n", + "23 High Medium Medium\n", + "24 High Medium High\n", + "25 High High Low\n", + "26 High High Medium\n", + "27 High High High" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "df = pd.read_csv(file_path+\"/user_preferences.csv\", index_col = 0)\n", "users_prefs = df.values" @@ -436,7 +675,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 33, "id": "d2fce88a-8d3b-4731-ae38-a40d958d87d7", "metadata": {}, "outputs": [], @@ -451,7 +690,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 34, "id": "9eba5fd3-be57-483d-bc3f-19cffedd365b", "metadata": {}, "outputs": [], @@ -468,7 +707,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 35, "id": "b685c01e-8738-41c8-a7a3-1ab52749aabb", "metadata": {}, "outputs": [], @@ -480,7 +719,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 36, "id": "787edd08-2aed-4c8c-acea-c4af9fd9d198", "metadata": {}, "outputs": [], @@ -498,7 +737,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 37, "id": "aff14bef-628e-4fed-b740-40577a0fd0af", "metadata": {}, "outputs": [], @@ -512,7 +751,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 57, "id": "ab841183-4557-489b-b7c7-63992e03d02a", "metadata": {}, "outputs": [ @@ -562,7 +801,7 @@ "No of users 1 8 4 13 1" ] }, - "execution_count": 18, + "execution_count": 57, "metadata": {}, "output_type": "execute_result" } @@ -582,6 +821,47 @@ "#rank_1_freq\n", "#np.zeros(5, dtype=np.int64)\n" ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "6f49f44f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAAI4CAYAAABdpSyFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACbyklEQVR4nOzdd3xb5dn/8c+l4W3LS7azd2IBCpmQQKGUUmhL6d4t/bVPF6O0lO6J2kJLB5SnLQ+UTneXFmghrELZe0MAOWTHTuLYTmJ5L+n+/XEUcLYdS7qP5Ov9eumVWDo6+jqJr1znPve5jxhjUEoppZRS6eGxHUAppZRSKpdps6WUUkoplUbabCmllFJKpZE2W0oppZRSaaTNllJKKaVUGmmzpZRSSimVRtpsKaWUciUReVFETjnIa6eISHNmE7mPiNwmIv/Pdg51aNpsTSAicoeIfPcAz79NRFpExHeQ9+1V1ETkXhHpF5FuEWkXkRtEZFI6syulcsto6pEx5mhjzL0ZzpUnIpeLSHOyxm0UkZ+OeH2TiJyWyUyHYox5kzGmwXYOdWjabE0svwfOFhHZ5/mzgT8bY4bHsK/PGGNKgPlAOfDTQ2+ulFJ7+T2pq0ep9DVgGXAcUAq8DnhmtG8+2EGrmti02ZpY/gVUAifteUJEKoC3AH8QkStFZFvycaWI5B9uh8aYXcD1wDFpyqyUyk3/4hD1KPn1K6NIIlIoIr8Xkd0i8hKwfOTORGSyiFwvIm3J0ajPjngtfwz1bTlwozFmm3FsMsbsyfNHYDpwc3LU68siMlNEjIh8XES2AHcnt/0fEYkm894hIjNG5PlfEWkSkU4ReUpERv4ZRETkHyLyJxHpEpHVIjJfRL4mIq3J950+Yvt7ReQTyd9/VEQeFJGfJD93o4i8acS2s0Tk/uR+7xKRq0TkT2P4O1NHSJutCcQY0wdcB3xkxNPvBRqBdwErgEXAsThHdd883D5FpDr53lEf+Sml1KHqkTHmuQO85WJgTvJxBvDKPCUR8QA3A88BU4DXAxeKyBnJTb7B6Ovbo8BFInKeiIRHjrwZY84GtgBnGWNKjDE/GvG+1wIh4AwReTvwdeCdQBB4APjriG2fSGapBP4C/ENECka8fhbwR6ACp7begfP/9RTgu8AvD5Id4HhgDVAN/Aj4zYjv4S/A40AVEMEZRVSZYIzRxwR6AK8BYkBh8uuHgM8D64E3j9juDGBT8venAM0jXrsX6AU6gK3An4Gg7e9NH/rQR3Y9DlaPRry+CTgt+fsNwBtHvPapPXUJp8HYss++vwb8Lvn7g9a3A2TyAucnswwA24D/d6BMya9nAgaYPeK524CPj/jak6yZMw7ymbuBY5O/jwB3jnjtLKAb8Ca/Lk1+Xnny63uBTyR//1Fg3Yj3FiW3rcMZkRsGika8/ifgT7b/HUyEh45sTTDGmAeBNuBtIjIbZ8j8L8BkYPOITTcnnzuYzxpjyo0xU4wxHzLGtKUttFIqJx2iHh3IZKBpxNcj69UMYLKIdOx54Iws1Y5476jqmzEmboy5yhhzIs581EuB34pI6DDfzshsM4D/HZFlFyA4I1OIyBeSpxhjydcDOCNRe+wY8fs+oN0YEx/xNUDJQXK0jPheekdsOxnYNeK5fTOrNNJma2L6A87Q/dnAf4wxO3CO3maM2GZ68jmllEqnA9WjA9kOTBvx9fQRv28CNiYPAPc8So0xb06+fkT1zRjTZ4y5Cmfk6ag9Tx9s833yfHqfPIXGmIeT87O+gnPKtMIYU44zurfvhQKpth2oFJGiEc9NO9jGKrW02ZqY/gCcBnwS2HPJ8F+Bb4pIMDkP69s4Q8xKKZVOB6pHB3Id8DURqRCRqcAFI157HOgUka8kJ9J7ReQYEdkziX7U9U1ELhRnuZtCEfGJs4ZVKa/OS90BzD7M93RNMuvRyX0GROQ9yddKcU7ntQE+Efk2UHaY/Y2bMWYz8CQQSS5vsRLnFKXKAG22JiBjzCbgYaAYuCn59CU4P4jPA6uBp5PPKaVU2hykHh3Id3BO/20E/oMzgXzPPuI4jcOi5OvtwK9xTs/B2OpbH3A5zum4dpz5W+8yxmxIvv4DnMatQ0S+eJDv6Ubgh8DfRKQTeAHYc1XgHThzul5Ofj/9ZO503oeAlcBOnO//7zjz0lSaSXKSnFJKKaUmEBH5O87VnxfbzpLrdGRLKaWUmgBEZLmIzBERj4i8EXgbznpnKs10pVullFJqYqgDbsBZZ6sZONcYo2skZoCeRlRKKaWUSiM9jaiUUkoplUbabCmllFJKpZE2W0oppZRSaaTNllJKKaVUGmmzpZRSSimVRtpsKaWUUkqlkTZbSimllFJppM2WUkoppVQaabOllFJKKZVG2mwppZRSSqWRNltKKaWUUmmkzZZSSimlVBpps6WUUkoplUbabCmllFJKpZE2W0oppZRSaaTNllJKKaVUGmmzpZRSSimVRtpsKaWUUkqlkTZbSimllFJppM2WUkoppVQaabOllFJKKZVG2mwppZRSSqWRNlsqJ4mIV0SeEZFVI567SEQaRWS1iDwnIleIiN9mTqWUskXrZOZos6Vy1eeA6J4vROQc4HRghTEmDCwHWoFCO/GUUso6rZMZIsYY2xmUSikRmQo0AJcCFxlj3iIiTcDJxpiNdtMppZR9WiczS0e2VC66EvgykAAQkVKgRAuIUkq94kq0TmaMz3YA5UKRgA8oSn7VRSSWNcOfIvIWoNUY85SInLLnacCM2OYM4IdAOfBBY8zDGY6plMp2kYAXp056cOpkwnKiUdM6mXl6GnEiiASCwEJgHhAEqpOPquSv5UAxTuEoYu8mPAF0AbFRPLYAq4nEtqT7WzoYEfkBcDYwDBQAZcANwGvZZ3g8OSn0J8aYey1EVUq5SSQQAMJAPVDDq3Vyz6Ocvetk3oh3G6Abpw52cug6uRV4AVhvq0HTOpl52mzlkkigEDgap2CMfNRmOEkMp5isHvF4nkgslskQySO2LybnIpwHvBV4vzGmQ0QEuBO4RIuIUhNIJODHaagWsnednJbhJL3Ai+xdJ1cTibVmMoTWyczQ04jZKhIoBV4HLMYpFAuBObhjHl4AODH5eFUk0MSrReU54L8ZLCxX4xyNPiYiAzhHoQ8Bz2To85VSmRYJ5AMnA8t4talaALhhKYMinKv9lu/1bCTQyt518h4isc0ZyqR1Mk10ZCubRAIzgbOSj9ey9zB2NjLA48DNwCoisecs51FKZbtIoBY4E6dOngaU2A2UEi+wp07Co9k0P0w5tNlys0jAA6zAKRpvAY6xGyjttgC34BSVu4nEBiznUUplg0jgWF6tk8fhTPbOVW3AbTh18g4isS7LedQoaLPlNs7pwTNwCsebcCa0T0Q9wF04R3KriMRaLOdRSrmFc3rwVJzm6i3AdLuBrBkE7sepkzcTiW2wnEcdhDZbbhEJrMBZzfedZP/pwVQzwL3ANcCNRGJDduMopayIBELAZ4EPkxunB1PtaeCXwJ+JxHpsh1Gv0mbLJueqmPfiFI/jLKfJFjuA3wDXZnDSqFLKlkhAgDfjHIyeRm6fIkyVTuCPwDVEYi/YDqO02bLDmcB5DvBpYJLlNNkqAdwKXEEkdo/tMEqpFIsEyoCPAZ8B5lpOk80eBH4K/Esn1tujzVYmRQJLcY7O3oeeKkylp4DLgeuIxOK2wyilxiESmAdcAHwUKLUbJqesA64Afk8k1mc7zESjzVa6OVcUvhunyTrBcppctxnnfl/XEon1Ws6ilBqLSOANwIU4FwbpqcL0aQf+D/gZkdhO22EmCm220ikSOB34Mc6CoypzmoGvEIn9xXYQpdRhOCP+PwFOsZxkotkNfAe4ikhs2HaYXKfNVjpEAgtxmqzTbUeZ4B4CPkck9pTtIEqpfUQCM4DvAx9AR7JsigIXEon9x3aQXKbNVgot+93RdY9sbr7U78w1cMNtc5SzbMTvga8Rie2wnEWpCS/cEC67e0vzl4LxxJeAfNt51CtWARcRia21HSQXabOVAuGGsA9n+YbIxzo6n7lod8fJtjOp/XQBlwBXEokN2g6j1EQUbgh/GPjxyr6+Nde2tL3Wdh61n0Hg58B3icQ6bYfJJdpsjVO4IXwScBXODU4RY3Y+sKXZF0iYgN1k6iDWAV8gErvJdhClJopwQ/honDrpNFjGDN24taV57tDQLKvB1MG0At8AfqvLRaSGNltHKNwQDuIsN3D2vq8t7+u//7ctrTq65W53Ap8lEmu0HUSpXBVuCBfhTMK+EPCNfK12ePiJu5q2LbeRS43a08BniMQesR0k22mzdQTCDeFTgL9wsAVJjRn+x7aWzfWDQ3MymUuNWS9wAZHYb20HUSrXJEezrgOOOtg2l7W2P3lmT++yzKVSRyCO0zBfqqNcR06brTEIN4Q9wLeSD++htq0ejj95T9NWLSLZ4U/AuURi3baDKJULwg3hj+PM/Sk81HZ5xmx4bFPTdN8+o17Klf4LfJhIrMV2kGykV8yNUrghXIdz6inCYRotgHafd9m/S4qfSHculRIfBp5MLtmhlDpC4YZwSbgh/Cfg1xym0QIYFJn9o6qKh9KfTKXA64FniQRebztINtKRrVEIN4RPwxn9qB3L+/zGbHxsU9NUP/jTk0ylWD/weSKxa2wHUSrbhBvCx+KcNpw/pjcaE7tvy9bhykSiKi3BVKolcNZHi+jt0UZPm61DCDeEvTjnqr/GEY4Cvqez675v79ytlzhnl78Dn9JLn5UanXBD+Bycmx0XHMn7F/YPPPDn7TtOSm0qlWb3Ax8kEttqO0g20GbrIMIN4Sk4k+DHd1WhMbF7mrYOVscTwZQEU5myHnifrj6v1MGFG8JlwK+A945rR8bE/7Jtx/rw4ODYRsWUbe3A2URit9sO4nY6Z+sAwg3hNwHPMt5GC0Ak8JnaoC4vkH3mAA8TCVxgO4hSbhRuCC/BWRpgfI0WgIj3/Lpgz7j3ozKtGriVSOCHRAKHncs8kWmztY/kVTSrcP4RpcSLeXknPpeftyZV+1MZkwf8jEjgSiIBvXebUknhhvDpwAM4ByUpsdvrXfz30pJHU7U/lTECfBn4B5FAnu0wbqXN1gjhhvCFOEPiqf1zEfGcXxvsT+k+VSZ9Dvg1kYD+vKgJL9wQfgdwM1CU6n1fVlUxZRAGUr1flRHOv4tIIOX/LnKB/ueRFG4IX4wzwTMtIxgxr/fYP5WV6Cq82et/gL8RCeiVpWrCCjeEzwb+gTPqm3LDItMi1VU6upW9Tgf+QySgt6vbh06QB8IN4cuBi9L9OV5jmh/d3FxVYMxh159RrnUb8C4isT7bQZTKpHBD+DzgF6TpgPQVxnTf2bStuy4er0vr56h0egY4g0iszXYQt5jQI1vhhrAn3BC+lgw0WgBxkanfqq58PBOfpdLmTcDtRAKltoMolSnhhvDXcG4knf65iyIl59UF16f9c1Q6LQbuJxKYYjuIW0zYZivcEPYDfwY+mcnPvb24aPk2n3d7Jj9TpdzJwN1EAroIo8p54YbwD3AWscyYtX7/CY8V5L+Yyc9UKVcPPEgkoPcIZoKeRgw3hAtw5h28xcbnzx4cevjfW7efYOOzVUq9CLyBSEybZ5Vzwg1hwTlteJ6Nzy9JJF54eHPz0ZKJ0TSVTttx6uSEbp4n3MhWuCFcgjPvxkqjBbAhz3/CQ4UFq219vkqZo4EHiARm2g6iVCol757RgKVGC6Db4znmN4Gyh219vkqZScB9RALLbAexaUI1W+GGsA+4ETjFchQuqqn2Gph4w4q5Zw5wD5HAmO6bqZTLXQOcbTvEzysCc3pFdLHT7FcF3EkkcJTtILZMqGYL+Dlwmu0QAL0ez1HXlJfp3e5zw0xgla4vo3JBuCF8EfAJ2zkAEiJ1XwlWPWk7h0qJcuA2IoFJtoPYMGHmbIUbwp8F/td2jpE8xrQ+tLm5sMQYvbItN9wMvINILG47iFJHItwQfgvwb9x0IG5M/y3N29unDw9PtR1FpcTTwMlEYhNqxNI9P1BpFG4IvxG4wnaOfSVEar5cU/207RwqZc7CZQ29UqMVbgiHgb/gtv8XRArOqQs2246hUmYJcN1Eu5eilR8qEdkkIqtF5FkReXLE8xeJSGPytedE5AoRGdeK3eGG8FHA3wFX/sU+UFiwYqPft9l2DpUy5xMJfN52CJX9Mlwna3BGZl05yt7k96+4u6jwWds5VMq8GWdaz4Rh8wjmdcaYRcaYZQAicg7OUv8rjDFhYDnQChzxauvhhnA1TgEpS0He9BDJP6e2ZoftGCqlfkwkcLrtEConZKJO5uNcODQjBXnT5ivBqsI46Cn63HEukcCnbYfIFDcNF38DONcY0wFgjBk0xlxmjOk8kp2FG8J5OAVkduoipsc2v++4/xQV6unE3OHFuY+iLuanUi2ldTLpN4Dr1/3r93gW/KyiXJeCyC0/JxJ4je0QmWCr2TLAf0TkKRH5lIiUAiXGmI0p/Ixrgaz5S/x6sKpUj9pySgXwLyKBEttBVNZKe50MN4S/AXwoVftLt98FSo+KeSRmO4dKGT/wTyKBnL/4wVazdaIxZgnOfebOx7mP0iuXRYrIGcl5CptEZMxHXOGG8FeA/5eytBkw4PHMu6KyXJeCyC3HAA1EAroCtjoS6a6T7wa+l7K0GWBEqi6qCT5rO4dKqVrgRiKBAttB0slKs2WM2Zb8tRXnVN9xQI+IzEo+f4cxZhHwApA3ln2HG8KvA36Q0sAZ8sey0nCHx7Pbdg6VUu8EPmc7hMo+aa6T83BWiM+6A4HHC/JPWOP3b7CdQ6XUMuBy2yHSKePNlogUJ4fDEZFinMmeL+A0SFeLSHnyNQHG1OmGG8JlwO/JwgICYEQqPldbnVW38WmKJXhdQw+hq7o5+v+6+d9HBwB4riXOyt/0EL66m7P+2kvnwIHXc+voN7z7ul7qf9FN6KpuHmkaBuArd/az8OpuPnJj3yvb/vG5wVf2n2Uu1flbaizSXCe9wB+A7FyEV8R/bl1wl+0YY6F1clTOJRJ4re0Q6WJjZKsWeFBEngMeB24xxtwOXA3cBTwmIs8DDwHPJB+j9b/A9BTnzain8/NPeCnPv852jtHyeeDy0wuInl/Cox8v5qonhnipLc4nbu7jstfns/rcEt5R7+PHDx34h/9zt/fzxrk+Gj9TwnPnFBMKeon1Gx5ujvP8uSXEjWH1jjh9Q4bfPzfEecvHdADvFkXAr/V0ohqDdNbJrwArUpw3o9p8vmU3lRQ/YTvHaGmdHBUBfpOrd+LIeLNljNlgjDk2+TjaGHNp8nljjPmJMWaBMWahMeYEY8yXjDGjmgwZbgi/DfhoOrNnhIjvvNqarJkAOqnUw5JJzhJmpflCKOhha6dhTXuCk2c4z79hto/ro8P7vbdzwHD/5mE+vthZIijPK5QXCB6BwbjBGEPfEPi98OOHB/nscXn4vVnbr5wCnGM7hMoOaayTi4BIGqNnTKS6snoIhmznGA2tk6M2B7jEdoh0cNPSD0cs3BAO4lx9mBN2+rxLbygpftx2jrHa1JHgme1xjp/q5ZgaLzetcQrHP14aoqkzsd/2G3YnCBYJH/t3P4t/2c0nbuqjZ9BQmi+8K+Rn8S97mFXuIZAvPLEtztvqx7Vuoxv8iEjA1WsZqdyVXA7nDzhXgGW9IZFZl1VVZN1SEFonD+tzRAIrbYdItZxotoCfATW2Q6TS96orawdh0HaO0eoeNLzrul6ufGMBZfnCb99WwFVPDLL02m66BpyjsX0NJ+Dp7QnOXebnmU+XUOwXLnvQGUb/8on5PHtOCZefUcC37hngu6fk8+unB3nvP3q55P6snI8AUEIOHRSorPNNIGw7RCpdV1qyaKfH0247x2hpnRwVD/BbIoF820FSKeubrXBD+E3A+23nSLVhkRmXVFc+YjvHaAzFnQLyobCfd4aco6r6ai//ObuYpz5VwgfCPuZU7F9EppYJU8uE46f6AHj3UT6ebtn7yO6Z7c7SY/OrPPzhuSGue08RL7TGWbsza5ckO51I4OO2Q6iJJXnbsq/azpFyIoHP1AWjtmOMhtbJMaknR05375HVzVa4IVwE/J/tHOlyY0nxkjavp812jkMxxvDxm/oJVXu5aOWrByKtPU4xSBjDJfcPcs6y/Sds1pV4mBbwsKbdKQj/3TjMUdV7/5P81j0DfPd1+QwlIJ68UMcj0JsVMzUO6nIigcm2Q6iJIdwQFpwR1aw/v3QgL+Tlnfhcft4a2zkORevkEfkikcBS2yFSJaubLeA7wEzbIdJGpPT82ppG2zEO5aGmOH98foi7Nw6z6JpuFl3Tza1rh/jr6iHm/7yb+l/0MLlU+Ngip85v60rw5j/3vvL+n7+pgA/d0MfCq7t5tiXB1096tRD9q3GI5ZO9TC71UF4grJzqJXx1NyJwbJ0r7ys+WgHgl7ZDqAnjU8CJtkOkjYjn/Npgv+0Yh6J18oj4gN8RCeTEQYIYc+B1Pdwu3BBeDDyBcx+63GVM4vfbW9csHRgI2Y6iUu5sIrE/2Q6hcle4ITwJiOI0+Dntqzt3Pfqhzu6sXtJCHdB3iMQitkOMVzaPbF1JrjdaACKeC2qD2T0YrA7mciKBYtshVE67hAnQaAH8uLJi6oDg6hEudUS+lgtXcWdlsxVuCJ8KnGw7R6Z0eT0LG8pKs+4SZ3VYNcB5tkOo3BRuCM8BPmI7R6bERaZ+q7rqMds5VMrlAV+3HWK8srLZwpmrNaH8tLJ8Zp9I7+G3VFnmSzq6pdLkmzjzXiaM24qLlm/zebfbzqFS7mNEAjNthxiPrGu2wg3h04DX2M6RaXGRyd8IVmXdQqfqsILA+bZDqNySHNX6sO0cGSdSdF5tjd6kOvf4gW/YDjEeWddskWNrb4zFnUWFx2/1ebfZzqFSTke3VKp9iwk2qrXHer/vhIcLClbbzqFS7v9l8+hWVjVb4YbwG8jlS5gPR6TwnNqazbZjqJSrBj5jO4TKDeGG8Fwm4qjWHiJyUW2110B2XmqvDsaPc2o8K2VVs8UEHtXaY1Oef+UDhQXP286hUu6LRAIltkOonPAtJsKV2ofQ4/Ec9cvyMr2oKPf8PyKBWbZDHImsabbCDeHTgRNs53CDL9RU+xOw/x1LVTbT0S01buGG8DzgQ7ZzuMHV5YF53SJdtnOolPKRpaNbWdNsoaNar+jzeEL/Vx54yHYOlXI6uqXGa8KPau2REKn5Sk31U7ZzqJT7CJHAbNshxiormq1wQ/gMYKXtHG5ybXlZfZdIp+0cKqWqgAtsh1DZKdwQng980HYON7m/sGDlJp9vi+0cKqWycnQrK5ot4GLbAdzGiAS/WFP9jO0cKuW+oKNb6gh9Ax3V2ptI/qfranTdrdxzdraNbrm+2Qo3hBeio1oH9HBhwcr1ft8m2zlUSlUB77IdQmWXcEO4HHif7RxutM3vO/7OosKnbedQKeUD/sd2iLFwfbMFnG07gGuJ5J1TV9NmO4ZKuQlzixWVMu8F8m2HcKuvBatK4xC3nUOl1IeJBMR2iNFydbMVbgh7sDAHofk3zUQviLL2G2v3e639tnZe+OgLDHcNH/C97Xe0s/bra1n7jbU0Xd1EYtC5aLDluhbWfnMtzdc2v7Lt7od20/6f9nFlbfH5lt9WXKSTQHPLKUQCU22HUFkl4wel2VQnBzyeeT+tLNeLinLLDLLoHsmubraA1wOTM/2hFa+pYOYXZu73/ODOQbpf7MZf5T/g+4Z2D7Hzzp3Micxh3qXzMAlD7LEY8d44vet6mXeJ81x/Uz+JwQQdD3ZQdWrVuPN+s7qqfBgOXNVUNvKgl++rUQo3hGdhYbHnbKuTfygrPSbm8XSMe0fKTbLmzJfbmy0rf5DFC4rxFu8/z7Tlry3Uvrf2kO81CUNiMIGJG8ygwVfhAwEzbDDGYIYM4hXab2un6g1ViG/8o6CDHpnz48oKXcAvt2RNEVHWfRjI+OmUbKuTRqTyczXVuiB0bnk3kUCB7RCj4dpmK9wQLgbeaTvHHp3PdOKv8FM4vfCg2/gr/FS/sZqXv/AyjRc24in0UHpMKd5CL2XLylj/7fX4q/14ijz0beijbElZyvL9taxk4W6PZ1fKdqhsO5pIYIntECoruKYxd3udfKog/4Ronn99ynaobAsAb7MdYjRc22zhNFquuDlvYiBB281t1Lyj5pDbxXvidD3Txfwfz6f+p/UkBhJ0PNwBQPDNQeZ+by6TPjCJ1htaqXlnDbvu28WWq7bQelPruDMakfILaoMvjHtHyk1c85+ocqdwQ3gFMM92DsiOOomI77zamo7x70i5SFbUSTc3W675AxxsHWSwbZB131rHmi+sYWj3EOsvXs9Qx9Be23W/2I2/2o+vzIf4hLJlZfSu691rm77NfQDk1+XT8VAH08+fzkDzAAMtA+PO+Vx+3okv5OXtP1tVZasPEAnouknqULROjlG7z7v0xpLix8e9I+UWZxAJHLrDdwFXNlvhhvBknMnxrlAwrYDQz0MsuHwBCy5fgL/Cz5zvzMFfvvcEUH+Vn771fSQGEhhj6Hmph/xJe1+N3XpDKzXvqMEMm1fvbujhlatxxkXEe15dsHv8O1IuUQucYTuEcqdwQ9iPi9bWypo6CXyvurJmEAZTsjNlmw/4gO0Qh+PKZgtnuQdr2ZqubmLDJRsYaBmg8fON7Lrv4FOhhnYPsemKTQAUzSmibHkZ6y5ex7pvrsMkDBWnVLyybedTnRTOKsRf4cdb7KVwbiFrv+kMRB1qjsNY7PZ6F19XWvJYSnam3MA1IxfKdd6MswiuFdlcJ4dEZl5aXflISnam3MD1dVKMMbYz7CfcEH4OWGg7R7byGbPlsU1NtXm6yGEu6APqiMT0PphqL+GG8D/Ruw0cOWM6727aOhCMJ4K2o6iUOIpILGo7xMG4bmQr3BCeijZa4zIsMv071ZWP2s6hUqIQOM12COUu4YawFz3FPD4iZefX1qyxHUOlzFttBzgU1zVbwEm2A+SCm0qKl+7wenfYzqFS4lTbAZTrLAb0huXjFM3zn/B0fp5rR0PUmLi6Trqx2XqN7QA5QaTkvNrgOtsxVEq8znYA5TpaJ1NBxHNBbXDo8BuqLHAikcCBb1vgAm5stnRkK0VezvOf8ERB/ku2c6hxO4pI4NBLcquJRutkinR6vQv/UFaqk+WzXzFwvO0QB+OqZivcEK4AjrGdI2eIyGdrgwkD7rsKQo2Vq4fIVcbpyFYKXVFZPqNfpM92DjVurq2Trmq2cG6mmvF7fOWybo/nmN8GyvSoLYsZQ++6xORjbedQ7hBuCC8AXL+IYzaJi0z+RrBKFzrNYsYwuM1ULrCd42B8tgPsQ4/W0uBnFYFZH+js6ikyxhW3P1KHljCycxtV6++PL+y7KbGy+olE/YI43rdsgq/azqZcQetkGvynqPC4rT7vtinD8cm2s6jDM4auNsrXPJw4qufm+MrAQ4ljFvST/3a+eotv02VnDtvOty+3NVs6DyENEiKTvh6suu/K1vbX2s6i9jdkvM0bzKTNdyWWJlbFV0yOmumzQfZdrDI086u3lG267Exdb0tpnUwHkcJzamueuXnrdm22XChupK3J1Ky7J7FocFV8Re0zZt68BJ5lB9g0DDyT6XyH45pmK9wQLgAO9AenUuC/RYXHN/l8zdOGh6fazjKRGYPpJ2/di2bm9tvix/lujy+ftZXgVOBwfy8eYDnw3/SnVC6nzVaabMrzn/BAYcHzJ/X161qPlg0a36a1Zkrzf+LLWJVYMW29mTIDGM0CtMejzdYhHQfk2Q6Rs0QKPl0XbL61ebs2WxlkDIOdFDU+lZi/+5b4iqI7E0vmd1IyD5h3BLtbgTZbE1q4ITwJmG07Ry77Qk21/9HNzQmP++Y05yxjiPeS//LzidmttyWOz78jvmz2DipnAjOPYHcrgGtSGjAF3NRs6dFamjX5/SvuLSp89pTevkW2s+QqY+hspfzlhxLHdK+Kr6h8KHHM/AHyUnWU7NrLmlXGaJ1Msz6PJ3R1eeDB8ztiOjcuTYyhbzclLz+RqN99c3xl6T2JRfN7KAwBoRTs3pV10k3N1krbASaCLwWrCh/To7aUiRvZscXUbrgnsWjw5vjKumfNnHnmwPMIUmF5mvarsofWyQz4ZXnZgo/EOrtKjSm1nSUXJAwd26l6+cF4uO/mxMrKxxKhBUP40nWF9QI3zm91U7Pl2ks2c0m/x7Pg5xWBBz63O6ZHyEdg0Pg2rjFTm/8TX+a5JbFi6gYzeQaQqQVH62Z+9ZbSTZed2TXaN4hIAXA/zk3JfcA/jTEXJ1+7CPgUMAQkcE5RfsUYoytqu5fWyQwwIsEv1VTfd82ONr2o6AgMG8+2jaZu438TS+Kr4ismv2BmzQE5LkMfL8Bc4OlRvyEDddIVzVbypqozbOeYKH4TKAt9LNYZK0uYgO0sbmYM8R4KXn4+Mbv11sTx+bfHl89pp3wWMMtirDnAs2PYfgA41RjTLSJ+4EERuQ1YBJwOrDDGdIhIHnARzo2vtdlyrzm2A0wUDxUWrNzg922ePTSs/zcdgjGYAfzro2bG9tvjyz23Jo6f2WRqpgA2r+qcwxiaLTJQJ13RbAHTAdfe0yjXGJHqi2qC9/26pVWP2kYwhr5dlDY+nqjvXBVfWXJv4tgFKZxHkCpjaraMMQboTn7pTz4M8A3gZGNMR3K7QeCyVAZVqRVuCHs4sgnD6kiI5H26rmbHnU3btNkawRiGuihc80xi3s5bEscX3hlfOnc3ZXNxRpPcYkwHJZmok25ptvRoLcMeK8g/4WW/f+P8oSGbozRWJQy7t1O19v74wr5ViZXVjyXq5w/jW2w712GM+WdFRLzAUzjF8CrgJaDEGLMxxdlUek1Dr9jOqBaf77jbioueelNP71LbWWwxhu52AmseSRzVtSq+svyBRHh+H/luv62e6+qkNlsTlYj/3Lpg+3+btk2YZmvYeLZuMJM2JecRTHnRzJydwXkEqTLmnxVjTBxYJCLlwI04p0FfuV+miJwB/BAoBz5ojHk4JUlVqmmdtOCb1VXlb+jpHfa55//LtEoYaWsywfX3JY4duDm+suYpM39+Ak+2NZuuq5Ou+Mdz4Y3xsv487msKSl5TNaXbqqR6Zxk1RkSvmEujVp9v+arioiff0tObc4vJJucRrHvJzGi5PX6c59bE8bOaTXAKMMV2tnE64uY4OefgXpw5CD0iMssYs9EYcwdwh4isQkdOXOuz/47XxD3c11wt/qYgJVurpKotQG3CI66o47lq0CNzLq8sv/8ruzpOtp0lHYaMd/NaM6XpzsRSbomvmPKymTaL0S0e6mauq5Ou+CE9odEsBF47oonEwHDCw/bePHZ2lNC9o1yGtlbjaaqWguZqKd9eQW1fgZTZS50bLg5WVZ7R0zvkz/I5c848gqLGpxLzdt6aOL74zvjSuR2UzjPDg/Na/vIVzPDtkEhQtOBEyk/60F7vjT12PT0v3et8kYgztLOZqRf8GUyCthsuJTHQTflJZ1M037nqvvX671F5+nn4Sve9o05GjGnSqYgEgaFkASkETsM5OvsBcLWIvD/5mgAFqY+rUuU1L5n57F8nEwmhpT+Ptlgx3a0BGdxahTQFpaC5WgLbK6npKpIKe6lzw5/LShd+qqNzV0UiUWk7y3gYQ6KP/LWrzayWW+PH5d0RP252C5UzzPDgDKdO3pcrdXLSWDbORJ10RbPFAf4DEfB5E0wp7WdKaT9MazcsWwf7FJrOQR87ugvp2FlK//ZKSTQFxd9UTck2PeoblUGR2T+sqrjvmzt3Z9VkeecmpIGXH0kc3XVTfGV58iak4f029Pqpff/38eQVYuLDtPz5yxTOXkr+lPpXNgkc/y4Cx78LgN51j9H5xL/xFpbS+eRNFB9zKsWhk2n9x8UUzV9J77rHyKudY6uAwBiLSHL7huR8BA9wnTFmVbJoFAGPicgAzuTQh3DhbS7UKw5UJz1eQ13xAHXFAzB5l2HRRtinTvYMednRU8DuXaX0bq+URHO1+JqqKdpWJVU7yqkd9kl+Br+PrGNEyj9bG7z/j9t3ZNXoljH0d1Cy5snEgo5V8RXF/00snt9N0QL2XUIk9+pk/syv3lK56bIzd41y+7TXSbc0Ikd0iahAWf4wZfldUNUF87cZ9iky8YSwvT+P9lgx3TvK9zrqK99eQU13kZSn6HvIWn8vLVl07u5Ye1UiUW07y8HsuQnpvYljh1bFVwafNvNGNY9ARJC8QgBMYhgScRA56PY9L91Pccipp+L1YYYHMfEhEMEk4nQ9+W+C7/p2ir6rI1I586u35G+67MyB0WxsjHke2G/Sf/Lqm58kHyo7HGmdLM6LMzuvByp6YE7LfnXSGKGt309bZxGdbQEZSNbJ/OZqKdtWSTBWIq6tDZnybH7eiS/m5a09enDwSG61lRHGEGuh8uUH4sf0rEqsrHokcfSoFg/NwToJTgM1qmYrE3Uyq5utwxHweg2TigeYtOeob/EG2KfQdCeP+jp2ltG7vUISzUHxNVVTsrVKKtrKqRv2Sm7PYxEJXFAbvP8vLjpqGzTezWvN1D3zCKauNVNncoTzCEwizvaGCxnevZ3SJWeSP/nA60Imhvrp3/gUlW84B4Dio15L+00/pufFuyl/7UfpevoWio9+PR6/9bNtdcBm2yFUxqWrTooYgkWDBIsGoa7DEN4M+9TJ/mEvLb357NpdQm9LhcSbq/E2BaWouUoqdlRQN+iXwnTkcw0R73l1wa77tmy1neQVw8azfZOp3Xh3YvHwqvjKSc+b2XNBjuhOEzlYJycBL9oOsYf1ZitaH/ID1uZeCZTkxSnZc9Q3d/sBj/pa+/20xYrp2ueoL7C9kmCsWKyNlabK6vy81zyfn7dm4cBgxleoTt6EdO1qM3uHM49g+ZwdVM4gRQvdisfL5I/9nER/N603Xspg2ybygjP3265v3ePkTwnhLXTu0OHJL6bmPREA4v3ddD52PcF3fJ2dt/2MRH83Zce9g/wpVpbgmoQ2WxORtdElgQJ/nJmBXmYGemFmq4E1MLJWJmDngJ+2riJibQEGtlWKaQpKflM1pdsrpXpXKTXIIYZLssAur3fJP0uLH393V4+Vq5gHjH991Ezfdkd8mefWxPEzNpu6qYx9asEB5WiddA3rzRbO8viulTzqqykapKZoECbtNizcBPs0ZH3DXlp68tm9u3Svo77iPUd9Qz6x3uYfkojn/Npg3wMZOGpLziNofDyxILYqvrL4nsSi+d0U1QP1h33zOHgKSiiYFqZvw9MHLCI90fspPurAU9diD/2VwMr30vPSfeTVzaX4qFNoveF71H3gB+mMfDDZfqWQOjKurpUeqCocoqowBjUxOHrLfgeug3EPO3rz2dVRQndLuQxvrcazJShFW6ukvKWS2v48KbH3HYzOpVWVtW/t6hnIS/PfhzEMd1O45tnE3PZbE8cV3hFfNmcXgTmkeQkQrZPp4YZmK6uvggMQKPTHmVXey6zyXpi1Y0+B2euor31gxJyIbVUYZ3SM0u2VEtxVQtD2UV+H17vor6Ulj36gq3tFKvebMHQ48wjCvasSK6sfTRw1fwjfolR+xsHEe2OIx4unoITE0AD9m5+l7Ph3759xoIeBpheofssX93ttaNdW4t27KJgeZrB1A+JzaqwZHkx7/oPI7dPa6mCyulYK5PkSTCvrY1pZH0xvM7AW9mnIOgb8tHYV0rGzjP7tlWKanKUuSrdVOksCJTzitfZNAMMiM75bXXnfJe27UnpRkTH07KTs5UcTodjN8ZWB+xPHLugj/+hUfsbBaJ1MP222MsQD1YVDVBfGoDZmOGYLHOCob8+ciJ6Wir2O+ipaKqgdyJPidOf8YVXF1Hd2d/fnmyNfBmDYeLZtMnWb/pucR7DazJpra/HQePcu2m/5KZgEmARF9SdRNPc4up65FYDSxW8GoPflRyiYuRhP3v7fdsf9f6T85LMBKA69lrYbLqHryZsI7HNpdAZNiJ8ZtZ+c/3sXKC8YorxgCIKdUN+83+jYcELY2pfPzo5iundUyFBzFZ49Fz21VFDbm4Elgf5dUrz0gt2xHbXx+BHfhD5hpL3ZVK+7P7Fw4Ob4yuCTZsH8OF4rd7DQOpl+4ky2tydaH5oKNFkNkSUSsHvQOeqLte856kvDQrBndvfce1nbzlNGs21y8dANUTN96x3x5b5bE8dP32Jqp443gzqkj2y67Mw/2g6hMitaH+pD10I7LAOdQz5au52Lnvq2OUtdpHwh2AUDgw/+c1vLa0a7/ZDxNq03kzffmVhqbomvmNpopk+Yu3dY8t1Nl515se0Qe+jIVhbxQEXBEBV7jvpCBzrqS8FCsLcUFy2/cFdHS108Xrfva8Yw1E3hy88k5ravSqzYcxPStM8jUHvRn5mJSf/eR0GgLG+YsspuqOyGefsvCbRnIdj2WDGdrQEZOpKFYNfk+U98siD/pWX9A0ft+5qzeGje2hfNrB23xY/z3R5fPmsb1dNw7m+pMsNVPy/abOWQFC4EW3xuXfDZG7e21I24CWn3qviKsgcSCzM2j0AdlP7MTDDR+pAAVucq5YpxLQQbpHhrlVS2JpcEuqAmGH9kSzPGMBCjeM2Tifm7bomvKLkrsWReF8X7Lx6qMslVddINzZarJrHlutEvBOspe7xk4X+fqXtT7+7Ko4qMr6R0FgzPctG6JRNVp8eMakFTlVO0TmbQGBaC9T5ZWH/P85Pe0N1atSjf5JUHasB8EF62l14B9HjotJ1hJDc0W67qPie6kQvBMtDOyTudqUH9+RXbW4OLNrZVLxruKp1Wm/DkzUNvFG5FWVx/ZiYg/Tt3kZELwTLYedTK2PXA9Qz6i3e1Vx+7rjW4uC9WNqs67i2Yj4j+3VlQFuce2xlG0mZLjUrBwO5J05vvmTS92fn3O+QrjLVXhV9uDS7pjQVmVwz7ihYgen+1DBmyHUBlnNbJLJA31FM5efvDx03e/jAAcU9e767K+hd21CyL7S6fVzbkL52PuH8tsRzhqjrphmZLT4lkIf9wX2DSjseXT9rxOAAJ8Q3sqljwfGvN0l27KhaUDOYF5iESsByToeFBrrzpQobjQ8RNnMWzTubM5R/da5u7nv07T6z7LwCJRJyWji1c9pHrSZgEv/rPxfQNdPOW5R/j2FnOhUe/vP1bvO+kz1FebG1Bb1cVEZURWiezkDcxWBRsf35xsP15ABLiGY6VzX6ptWZp287Ko/L7CyrnIB7ri29qnUw/NzRbo70rt3IxjxnOr9714sLqXc6ULoMkOktnrGmtWdrSXnV0Xl9hcBbi2e/qxnTzef189qzLyfcXEo8Pc8VNn+Oo6ccxq/bVC4hOW/Q+Tlv0PgBWb3qYe1ZfT3FBGfeuvoHj55/O0jmv4/9u/SrHznoNqzc9zLTqeTYLCLisiKj0CzVGe6P1oX506Yes5jEJX0Vs3VEVsXWvPNddPHlja3Bxc3v1QukpqptuPL7pmc6Vo3Vy2OaH78sNzdZO2wFU6gnGE+jatCDQtWnBvPXXA9BbWLOlNbikqS24MNFdPHmq8fjTvs6MiJDvd+6PG08ME08MIxx8of4n19/D0rmnAuD1+BgaHmA4PoSIEE/EuWf1DZzzxkvSHftwtNmamHaRpptRK3tKerbNKunZNmv2plsA6M8vb2mrXrSxNbh4sKt02qSEJ29uuufHap1MP+vNlh6xTRxFfa3TZ265ffrMLbcDMOgvbW+rPnZda82Sgc7SGcG4N38+Mv7FBveVSMT54Q3n0hbbyslHv42ZtQe+KergUD/Rpid474kXALBs7qn8/u7v89jLd/L24z/JAy/+m+Pmv4E8+3ez77UdQFmxE222cl7BQEfdtK331k3bei8AQ97C2M7qY9buCC7piQXmlA/7iurTMT9W62R6WW+2knYCU2yHUJmVN9RVPWX7g9VTtj8IwLA3v3tX5VEv76hZ2tkRmFs+5C+Zj0jReD/H4/HytXdfS+9AN7/6z7fZtmsjkyv3H1RbvfkRZtceTXGBs+5rYX4J577p+wD0DnRx53N/45Onf4e/3Hc5vQNdnLrwPcyus7Lk2HYbH6qs07MAE5A/3heo2/HEsrodTwDO/NjdFfNX76hZunN3RX3xQF5gfirmx2qdTC9ttpRr+OIDJTVtzyypaXsGgIR4hjoCc19srVnavqsyVNCfXzkPkcoj3X9RfgnzJi3ipaYnDlhEnhoxNL6v2576I2cs/hBPrrubacH5LJt7Ktfe8S0+d9YVRxpnPFxVRFTGaLOl8Jjh/KpdL4Wrdr0EOPNju0qnv7yjZmnLzqpj/L2FwZmIZ9KR7l/rZHq4qdlSai8ek/BXdrx8dGWHsz6gAdNdMnV9a3DJtvbqsKe3sHam8XgP2aR39XXg9fgoyi9hcHiANVuf4rRF799vu76BbtZtf57/d+rX9nutNdZMrGcn8yYfS/POdfi9+QjCkJ272Q8B7aPdWES6jTEl+zwXAT4JtI14+hRjTIeIvAa4AthzW6crjDHXji+yShGtk2o/gvGUdW2eX9a1ef689TcA0FsYbGoNLtnSVn1sortk8hTj8c8+1D5ysE7CGJqtTNRJbbZU1hCQ0u7mOaXdzXPmbLwJgL78yu1twcUbW4OLhrtLpk5KePxzEXllZmdn707+eM+PSJg4xhiWzHkt4RkreeClmwE46aizAHhu04PUT136yiTRkW5+/Lecddz/ACSP1L7NvS/cwJnLPprub/lAdpx/zampuHv8T40xPxn5hIjUAX8B3m6MeVpEqoE7RGSrMeaWFHymGh+tk2pUivraps3ccse0mVvuAGDQX7KzrfrYda3BJf2dZTP3mx+bg3USUjOylbI6Kcakom6PT7Q+dA3wads5VPYb8hV1tFeH17YGl/TEymZXDfsKFyCSS7c6eeL8a049brQbH+KIrfsAReR7gDHGfHvEc68HIsaYk8YXW41XtD70BeAnh91QqcOIe/J6dlYetaa1ZmnX7vJ5pUP+kgWIFNvOlUId519z6mFvJr5HJuqkW0a22g6/iVKH5x/uLZ/U8tjySS2PARD3+Pp3V9Q/t6Nm6e7d5QtKB/PK5iFSdpjduFlzivbzeRH5cPL3u40xrwOOBhr22e7J5PPKPq2TKiW8icHimvZnl9S0PwskF1sNzHlpR3Bp267Kowr6CyrmIp4quynHxXV10i3Nlt60U6WFNzFcUL3zhWOrd74AgEHisbKZja01S1t3Vh7t7yusnoN4aizHHIv1KdrPfsPjgDDybruvsj/8rUDrpEoTj0n4KjrWHlXRsfaV57qLJ2/YUbN0a3tV2NNbVDfdeLzTLEYcK9fVSbc0Wy/aDqAmBsF4yzs31pd3bqyHfwLQU1S7JTmZ1PQUT5pmPL6ZdlMeUqqKyIG8CCwDbhrx3FLgpTR+pho9rZMqY0p6ts0u2bht9pyNzryt/vyK7a3BxZvagouGukqm1SXnx6Z1sdVxcF2ddEuzFQUSgFv/4lQOK+7dMX3W5tumz9p8GwADeWVtbdWL1jsrOE/fM5nUaznmHuksIlcBj4nIDcaYZ0WkCvgh8N00fqYapVBjtCtaH9oCZPx2LkoVDOyeNL357knTm+8GYMhXGGuvWvhya83inljZnMphX2G9i+bHuq5OuqLZCjVG+6L1oQ3AXNtZlMof7AxO3XZ/cOq2+wEY9uZ37aw8em3rK4utFi9AZP/LcTJjrEWkSERGzl/Ys+DNyLkI4FxZsyn53K9EpBRnuPxKY8zN48irUutFtNlSLuAf7gtM2vHY8kk7RsyPLV/gzI+tWFAy6Cy2amt+rOvqpCuaraQX0WZLuZAvPlBa2/b0ktq2pwFIiHewo3zeCztqlrTvqggVDeRXzENk1Fe+jMMwsGUsbzDGHGy0OHKQ7e8Hlo8tlsqgF4E32Q6h1L68ieGC6l0vHlu9yznbbZBEZ9nMNTtqluzYWXmMv6+wejbiqc1QnDE1W5mok25qtl4A3mY7hFKH4zHxvMrdjcdU7m4E9iy2Om3djpql29qrjvH1FdbMONxiq0dozfnXnOqqO9mrjHvBdgClRkMwnkDnxgWBzo0L4HoAegtrtuyoWbKlvfpY0108earx+PZfon78eoGNadjvuLip2dLJnyorOYutNs0t7W6aO3fDvwDoK6ja2hpcvLmtetFwd8mUyQmPf87IxVaP0KPjDquyndZJlbWK+lqnz9p8+/RZm28HYMBf2tYWXLS+Lbh4oLN0RjDuzV+QgvmxT55/zanx8adNLTc1W3rEpnJGYf/OKTOa7poyo+kuAIZ8xbvbqsNrW2uW9sbKZlXHvQULEPGPcbePpT6pyjIv4VxiPt7GXSnr8oe6glO3PRCcuu0BAIa9+d07K49+ubVmSWdHYG4gudhq0Rh368o66aZmaw3OnBQ3ZVIqJfzDPRWTWx49bnKLMzgV9/j7dlWEXmytWRLbXT6/ZDCvbAEiJYfZjY5sTXChxmhvtD60ETjkve6Uyka++EDJ3vNjPUMdgbkvttYsa99ZWV84kF85F5HKw+zGlXXSNY1NqDE6GK0PPYezXoVSOc2bGCoM7nx+UXDn80BysdXA7OiOmqVtuyqPyusrqJqDeIIj3tKNnkJSjsfRZktNAB6T8Fd2vHx0ZYeznq8zP3bq+tbgkm3t1WFPb2HtDOPxTt3nba5stlxxb8Q9ovWhy4Cv2M6hlBt0F03a1FqzuKm96ljpL6hs+fRv3vIe25mUfdH60MeBX9vOoZQb9BVUbmurXrypNbhouKd4ku+cX595ou1MB+K2Zus04E7bOZRyoe+GGqMX2w6h7IvWh6YDm23nUMqF/hpqjH7QdogDcduK7Q8C/bZDKOVC99gOoNwh1BjdAqw97IZKTTyurZOuarZCjdF+nIZLKfWqfuAR2yGUq9xlO4BSLqTN1hjoaUSl9vZoqDE6YDuEchWtk0rtrTnUGF1nO8TBuLHZ0iM2pfZ2t+0AynXuAVy3cKNSFrm6Trqx2XoGaLcdQikX+aftAMpdQo3RDuBJ2zmUcpHrbQc4FNc1W6HGqAH+azuHUi6xOtQYjdoOoVxJTyUq5egAbrcd4lBc12wl3WY7gFIu8XfbAZRraZ1UyvGvUGN00HaIQ3Frs3UDzp27lZrotNlSBxRqjD4MrLedQykXcH2ddGWzFWqMduE0XEpNZE+7+eoa5Qp/sB1AKct2kgUX1rmy2UpqsB1AKctcf7SmrPsD4J7bgCiVeTeEGqPDtkMcjpubrbuBJtshlLJImy11SKHG6Cbgfts5lLIoK+qka5utUGM0AfzRdg6lLHk01BjV+9+p0dCzAGqiagXutR1iNFzbbCVpEVETVVYcrSlX+Cd6QZGamP4ZaoxmxeK+rm62Qo3Rl4FHbedQKsN60AMNNUp6QZGawK62HWC0XN1sJel/Omqi+V2oMbrbdgiVVbROqonmjlBj9AXbIUYrG5qtvwHdtkMolSEJ4ErbIVTWuRvYYDuEUhl0ue0AY+H6Zit5D7BrbOdQKkP+FWqM6kKVakySFxT9yHYOpTLk+VBjNKtuV+X6ZivpcqDfdgilMuAntgOorPV7YKvtEEplQFaNakGWNFuhxmgL8BvbOZRKs0dCjdFHbIdQ2SnUGB1Am3WV+7YBf7UdYqyyotlK+hEwZDuEUmmUdUdrynWuxVl7SKlc9fNQYzTreoGsabZCjdEt6CKnKndtAG60HUJlt1BjtBf4qe0cSqVJN/BL2yGORNY0W0k/ALJiATOlxujy5CRnpcbrKkCXDlG56NfZuixOVjVbocboOuA62zmUSrGXgV/ZDqFyQ3KR05/bzqFUinUAl9oOcaSyqtlKuhS9y73KLV/KxjkIytX+F+iyHUKpFLok1Bhttx3iSGVdsxVqjL4I/Ml2DqVS5L+hxuhNtkOo3BJqjO4Cfmw7h1Ipso4sH63NumYr6UtAzHYIpcYpDnzedgiVs36E85+UUtnuS6HG6KDtEOORlc1WqDG6A/im7RxKjdNvQo3R1bZDqNyUXHfrM7ZzKDVO94Qao/+yHWK8srLZSroaeMZ2CKWOUCfwLdshVG4LNUbvAK63nUOpI5QgR0b/s7bZCjVG48B56GR5lZ0uDTVGdfFJlQkXAj22Qyh1BH4baow+ZztEKmRtswUQaow+it7GR2WfDThXiymVdqHGaDPwXds5lBqjLnJoulBWN1tJXwV22g6h1CgZ4NPJ+TRKZcpPgZdsh1BqDL6UnJ+dE7K+2Qo1RncCX7OdQ6lR+t9QY/Qu2yHUxJJcx+182zmUGqVVocZoVt6W52CyvtlK+jXwkO0QmRY3hndu2si5zU0ARPv7ef/mTbxj00bes2kTz/f1HfB939i+ndesW8tbN27Y6/nL21p5+8aNfHX7tleeuykW44+7d6Xvm5hYXkQPDJQlocbovUCD7RyZpnUy67QBn7AdItVyotkKNUYN8CEm2Npbf9y9mzl5+a98fXlbK+dVVXPjzFl8prqay9sOPP/6HYEA106dttdzXfE4z/T18a9Zs4gbeHmgn/5Eghs7Y7y/vCKt38cEMQh8KNQY7bcdRE1oF+DMGZwwtE5mnU/k0unDPXKi2QIINUY3A5+2nSNTWoaGuK+nm3cFAq88Jwg9Cedext2JBDU+/wHfu6yoiIB37796j8CQMRhjGDAJfAi/3bWLD5dX4BdJ3zcycXwzV66qUdkred/EDwLDtrNkgtbJrPOrXL2jRs40WwChxujfmSDD5Je1tvLFYA2eET/fX62p4cdtrZy6fh0/bmvlwmBw1Psr9ng5vaSUd27exBS/n1Kvlxf6+3h9aWka0k849wGX2w6hFECoMfoYELGdIxO0TmaVdeTImloHklPNVtJngDW2Q6TTvd3dVPq8HF1QsNfzf+vo4Ks1Ndw9Zy5fCdbwrZbtY9rvx6uquHHmLL5SU8vP2tv4THWQf3Z08PltW7lmZ9be/9O2GPCRUGM0YTuIUiP8ALjbdoh00jqZVeLA2aHGaM6uB5dzzVaoMdoNvBvotZ0lXZ7u6+We7m5OW7+OL2zbxmO9vXx52zb+3RnjDSXOEdYbS0tZ3X9k04NeSr5vZl4e/+6M8dPJU1g7MMCmway+NZUtnwk1RrfYDqHUSMnm/wPAtsNtm620TmaVS5PrZuasnGu2AEKN0ReAT9nOkS4XBWu4Z85c7pozl8snT+b4oiJ+NHkyNT4fT/Q5Peajvb3M8B94LsLh/Ly9jQuqqxk2hkRyfX4PQn9CB2fG6GehxuifbIdQ6kCSdzB4Lzk6f0vrZNZYBXzHdoh0y8lmCyDUGP0zzv0TJ4zv1Nbxo9ZW3rFpI1e2t/GdukkAtA4P8enkZc8AX9y2lQ9s3symwUFet34d13d0vPLaXV1dHFNQSI3PT5nXy7GFhbxt40YA6vcZjleHdAs5PP9A5YZQY/Qh4Mu2c2SS1klXeQ74wESYZiHG5O6tBaP1oTzgTuBk21nUhPI8cGLylLZSrhetD/0BONt2DjWhbAeOS95OKufl7MgWQKgxOgi8FVhtO4uaMLYDb9FGS2WZjwN32A6hJoxe4KyJ0mhBjjdbAKHGaAx4I7DZdhaV83qBt4Yao02H3VIpF0nezuddwOO2s6icZ4APhxqjT9kOkkk532wBhBqj24AzAL0uV6WLwbl0+UnbQZQ6EsnL7s8EXradReW0r4YaozfaDpFpE6LZAgg1RtcAbyGHl4RQVn0t1Bi9wXYIpcYj1BhtxzkwHdviU0qNzq9DjdEf2Q5hw4RptuCVlZPfTY5e6qysuTLUGP2h7RBKpUKoMboJeBMT7F6zKu3+BZxnO4QtE6rZAgg1Rm/DmQyau5dhqkz6Yagxqks8qJySvI/n24AB21lUTrgOeE9ybuCENOGaLYBQY/QP6BpIavy+F2qMftV2CKXSIdQYvQ94P6BLoqvx+BPwwVBjdEKfUcrpdbYOJ1of+ijwa8BrOYrKPt8MNUYvtR1CqXSL1odOA24ESmxnUVnnd8AnJsKipYczoZstgGh96Czg70Ch7Swqa3wp1Bj9ie0QSmVKtD60DLgNqLadRWWNa4DzQo3Rid1kJE34ZgsgWh86CbgJKLccRbmbAT4Xaoz+3HYQpTItWh9agLPw6QzbWZTr/W+oMXqh7RBuos1WUrQ+tBC4HZhkO4tyJQOcG2qM/tJ2EKVsidaHpuA0XEfbzqJc68ehxuiEut/maGizNUK0PjQLp5DMs51FuUonzoKlN9kOopRt0fpQBbAKOMF2FuUqQ8CFocbo/9kO4kbabO0jWh+qwZmbsMR2FuUKa4C3hxqjjbaDKOUW0fpQIfAPnBXnldqBs7TDA7aDuNWEXPrhUEKN0VbgZOCPtrMo61bh3JVeGy2lRgg1Rvtw1uH6Abpm4UT3JLBMG61D05GtQ4jWhz4B/BwosJ1FZZQBLgW+rVfSKHVo0frQm3AOTqtsZ1EZ1wCcE2qM9tsO4nbabB1GcuL8P4D5trOojOgGPjIRb5Sq1JGK1oemAX9D53FNFMPAF0KN0Z/ZDpIt9DTiYYQao88Dy3AKicpt64AV2mgpNTahxmgT8FrgcttZVNq1A2/QRmtsdGRrDKL1oXOBnwL5trOolPs9zhpanbaDKJXNovWht+L8PFVYjqJS73acFeG32g6SbbTZGqNofWgJzorzc21nUSnRAnwq1Bi92XYQpXJFtD40E+dswPGWo6jU6MY5bXit7SDZSk8jjlGoMfo0sBBnArXeoDW7XQcco42WUqkVaoxuwpm/9VmcdepU9roPWKiN1vjoyNY4ROtD9cDVwCmWo6ixaQbO10VKlUq/aH1oEnAl8F7LUdTYdABfBn6tV2WPnzZbKRCtD50N/ASosZ1FHVIC+D/g66HGaJftMEpNJNH60BnAVcAc21nUYf0TuCDUGG2xHSRXaLOVIslbWFwGfBIQy3HU/h7GmXPwqO0gSk1U0fpQAfB14CtAnuU4an9R4Muhxugq20FyjTZbKRatD63EGT1ZZDmKcqwGvqHzspRyj2h9aAHOKNfrbWdRAGwBIsAfQo3RuOUsOUmbrTSI1ocEeBfwLZzJ9CrzNgLfBv4SaowmbIdRSu0vWh96HXAxzhpdKvPacC72uibUGB2wHSaXabOVRsmm6204/+kvthxnomgBLgGuDTVGh2yHUUodXrQ+dDJO03Wq7SwTRCfOArRXhBqj3bbDTATabGVItD50Fk7Ttcx2lhzVAfwYuDLUGO21nEUpdQSi9aETcZquN9jOkqP6caa5/CDUGG23HWYi0WYrw6L1oTfjFJPjbGfJEc/jFI8/6xGaUrkhWh9agVMn32g7S47YCPwS+I02WXZos2VJtD50EvA/wHuAYstxss0gzqXJ/xdqjD5kO4xSKj2i9aGFwMeBDwFVluNkmwRwG87B6O06d9UubbYsi9aHSnAW+/sf4ETLcdxuE68enbVZzqKUypBofSgPeCtOnTwd8NpN5GptwG9xJr1vspxFJWmz5SLR+tB84GPAR4DJluO4RS/wH+A3wK16dKbUxBatD00G/h9OrZxnOY5bDOHcVuf3wD9CjVG9lZzLaLPlQtH6kBc4A/gAzlHcRFuZfgewCvg3cFeoMdpnOY9SyoWi9aHXAB/Gmds1w3KcTIvhnCb8N3BbqDEas5xHHYI2Wy6XXD5iEU7zdQbOzV1zceXlKE7RuAl4TEewlFJjkVwo9QycA9RTyM25sFtwauS/gft0eZvsoc1WlknO8TqFV5uvbB1G3wA8ATwKrAo1RtdZzqOUyhHJOV6v4dU6uZDsvI3aNpw6+RjO6NWzduOoI6XNVpaL1odm4KzdtRhYkvy1zmqo/e0pGE/u+TXUGN1pN5JSaqKI1odqgeXsXSfddtpxF0593PN4MtQY3WY3kkoVbbZyULKwhJKP+uSvs4EgUJaGjzQ486yaRzyagDXAE1owlFJuE60PVfBqndxTK+fizJEtJz0jYe3sXyfX4TRWG9LwecoltNmaYKL1IT9QjdN4VR/g935g+DCPAWA7rxaMrTp3QCmVK5IXKVXxam3ct17m49TCOAevk4PscxAaaoz2Z/QbUa6hzZZSSimlVBp5bAdQSimllMpl2mwppZRSSqWRNltKKaWUUmmkzZaLiUi5iPxTRBpFJCoiK5PPX5R8brWIPCciV4iI33ZepZTKNK2TKhv4bAdQh/S/wO3GmHeLSB5QJCLn4KyQvMIY05F8/iKgEOf+WEopNZFonVSup1cjupSIlAHPAbPNiL8kEWkCTjbGbLQWTimlXEDrpMoWehrRvWYDbcDvROQZEfm1iASAEi0gSikFaJ1UWUKbLffy4dxW4mpjzGKgB4jgrNYOgIicISLPisgmETnBTkyllLJG66TKCtpsuVcz0GyMeSz59T+B+UCPiMwCMMbcYYxZBLwA5FlJqZRS9midVFlBmy2XMsa0AE0isiD51OuBl4AfAFeLSDmAiAhQYCWkUkpZpHVSZQu9GtHdLgD+nLySZgPwMaADKAIeE5EBoBt4CHjGVkillLJI66RyPb0aUSmllFIqjfQ0olJKKaVUGmmzpZRSSimVRtpsKaWUUkqlkTZbSimllFJppM2WUkoppVQaabOllFJKKZVG2mwppZRSSqWRNltKKaWUUmmkzZZSSimlVBpps6WUUkoplUbabCmllFJKpZE2W0oppZRSaaTNllJKKaVUGmmzpZRSSimVRtpsKaWUUkqlkTZbSimllFJppM2WUkoppVQaabOllFJKKZVG2mwppZRSSqWRNltKKaWUUmmkzZZSSimlVBpps6WUUkoplUbabCmllFJKpZE2W0oppZRSaaTNlguJSERE/pSmfRsRmZuOfY+ViJwkImts51BK5T4R+b2IXGI7h5qYtNmyREQ+KCJPiki3iGwXkdtE5DUuyPUGEblHRLpEZKeIPCsiXxGRglR/ljHmAWPMglTvVynlXiKySUT6krVvz+MXljN9VEQetJlhDxE5RUSabedQqaXNlgUichFwJfB9oBaYDvwf8DaLsRCR9wD/BP4CzDDGVAHvA6YC02xmU0rllLOMMSUjHp+xHcgNRMRnO4NKD222MkxEAsB3gfONMTcYY3qMMUPGmJuNMV86yHveKiIvikiHiNwrIqERr+11WnDfoXIR+VJy5GybiPzPIXIJcAXwXWPMr4wxuwCMMWuMMRcYY9YmtztORB5JZtkuIr8Qkbx98pwnImuTo2PfE5E5yfd0ish1e7bf9wguecT7RRF5XkRiIvL3kSNqIvLlEd/LJ9x0SlQpNX4i4hWRn4hIu4hsEJHzkz/nvuTrm0TktBHb7zXlQkT+ISItyfpxv4gcfYQ5NiVr5/Mi0iMivxGR2uQZiC4RuUtEKpLbzkxm/FSyNm0XkS+M2Fe+iFyZfG1b8vf5yddOEZHm5NmDFuCvwG3A5BGjfpNHWXfPSdbd3SJyVbKm73n9kyISTWZ/SUSWJJ+fLCLXi0ibiGwUkc8eyZ+XOjxttjJvJVAA3DiajUVkPs4P4IVAELgVuHnkD9oh3vtG4IvAG4B5wGmH2HwBzgjW9YfZbRz4PFCN8728Hjhvn23eCCwFVgBfBq4FPoQzOnYM8IFD7P+9yffPAhYCHx3xvVyU/B7mAq89TE6lVPb5JPAWYDGwDHj3GN9/G06tqwGeBv48jizvwqmd84Gzkvv+Ok7t8wD7NiavS3726cBXRzSF38CphYuAY4HjgG+OeF8dUAnMAD4CvAnYNmLUbxujq7tvAZYnP+O9wBnwyhmLSHLfZcBbgZ0i4gFuBp4DpiT3eaGInDGmPyU1KtpsZV4V0G6MGR7l9u8DbjHG3GmMGQJ+AhQCJ4zive8FfmeMecEY04PzA3cw1clfW/Y8ISJ/Sx5J9YrI2QDGmKeMMY8aY4aNMZuAX7J/4/NDY0ynMeZF4AXgP8aYDcaYGE7BWnyIHD8zxmxLjqzdjFOgRn4vLxpjeoHvHP7bV0q51L+StWXP45PJ598LXGmMaUrWgB+MZafGmN8aY7qMMQM49e5Ycc4mHImfG2N2GGO2Ag8Ajxljnknu+0b2r2PfSZ6pWA38jlcPKj+Ec8ag1RjThlO7zh7xvgRwsTFmwBjTd5DvazR19zJjTIcxZgtwD6/Wzk8APzLGPGEc64wxm3Eas6Ax5rvGmEFjzAbgV8D7x/bHpEZDzw9n3k6gWkR8o2y4JgOb93xhjEmISBPOkcho3vvUiK83H2zDZC6AScDG5Ge9H0CciaPe5O/n45xuXAYU4fwbemqffe0Y8fu+A3xdd4gcLSN+35v8HvZ8L0+OeK3pEPtQSrnb240xdx3g+cns/bN9qJq1FxHxApcC78E5C5BIvlQNxI4g4+HqWMk+2++bO5z8/V41PPn7ySO+bjPG9B8qyCjr7r61c0++acD6A+x2Bs7pyo4Rz3lxGkuVYjqylXmPAP3A20e5/TacHwrglblV04Ctyad6cX749hjZyGxn74nt0w/xOY3Jfb7zMHmuTm47zxhThjOsLod+S0psxznNuYdO2Fcq9xyuZvVw8Hr3QZyLjE4DAsDM5POZqE+wf+5tyd/vVcP3eQ3A7LOffb+G8dXdJmDOQZ7faIwpH/EoNca8eZT7VWOgzVaGJU+lfRu4SkTeLiJFIuIXkTeJyI8O8JbrgDNF5PUi4ge+AAwADydffxb4YHJi6RvZe2j5OuCjInKUiBQBFx8il0nu++LkZMoKcczDuWJyj1KgE+gWkXrg3CP4YzgS1wEfE5FQ8nv5doY+VymVOdcBnxWRqckJ6F/d5/Vngfcna+a+c7pKcWrjTpyG7PsZyDvSt5L1/GjgY8Dfk8//FfimiARFpBqndh1qHcUdQNU+pz/HU3d/DXxRRJYma/pcEZkBPA50JifnFyb/DzlGRJaPYd9qlLTZssAYcwXOZO9vAm04RxifAf51gG3XAB8Gfg6040zUPMsYM5jc5HPJ5zpw5gb8a8R7b8NZYuJuYF3y10Pl+jvOnIkPJzO14xS/a4F/JDf7Is4RZBfO+f2/77+n1Et+Lz/DmYuwDmeEEJziqpTKLjfL3uts7blg6FfAHTiTtp8Gbtjnfd/CGaXZjTP36S8jXvsDzim6rcBLwKNpzH8g9+HUpv8CPzHG/Cf5/CU4UyCeB1bjfF8HXVzVGNOI06BtSM5nm8w46q4x5h84p1f/knz/v4BKY0wc5/+ORThTR9pxGrMjneOmDkGcAQ2lsos4y1+8AOSP4WIDpVQWEZGZOI2A360/59mQUdmnI1sqa4jIO0QkL3l64YfAzVrclFJKuZ02WyqbfBrntOt6nHVnMjVfTCmllDpiehpRKaWUUiqNdGRLKaWUUiqNtNlSSimllEojbbaUUkoppdJImy2llFJKqTTSZksppZRSKo202VJKKaWUSiNttpRSSiml0kibLaWUUkqpNNJmSymllFIqjbTZUkoppZRKI222lFJKKaXSSJstpZRSSqk00mZLKaWUUiqNtNlSSimllEojbbaUUkoppdJImy2llFJKqTTSZksppZRSKo202VJKKaWUSiNttpRSSiml0kibLaWUUkqpNNJmSymllFIqjbTZUjlJRLwi8oyIrBrx3EUi0igiq0XkORG5QkT8NnMqpZQtWiczR5stlas+B0T3fCEi5wCnAyuMMWFgOdAKFNqJp5RS1mmdzBAxxtjOoFRKichUoAG4FLjIGPMWEWkCTjbGbLSbTiml7NM6mVk6sqVy0ZXAl4EEgIiUAiVaQJRS6hVXonUyY7TZUjlFRN4CtBpjnhr5NGBGbHOGiDwrIptE5ISMh1RKKYu0Tmaez3YAZUkkUAxUA1VAOVAMFCUfhclfATqB2AEfkVh3ZkOPyonAW0XkzUABUAb8H9AjIrOMMRuNMXcAdyQnheZZzKqUcrNIIB8I4tTKcvauk3seXg5VJ6GLSMxt83W0TmaYztnKVZGAALOAcPKxEJiLUziqSM2Exzh7F5ktwOoRjzVEYsMp+JwjIiKnAF9MzkU4D3gr8H5jTIeICHAncIkx5l5bGZVSlkUCU3Dq455aWc+rDVZxCj4hAXTh1MhOYCvwAk6NfB6IEon1p+BzjojWyczQka1cEAlU8Wqh2NNYHQ2UpPmTvUBF8gFwLHDWiNcHiQQaebWoOE1YJNac5lwHcjXOUehjIjIAdAMPAc9YyKKUyrRIoBQ4hr0bqzCv1q908QCB5INkhjNGvB4nEljL3geqq4ENFkbEtE6miY5sZaNIYAZOU/NGYDEw2W6gMduN03zdBdxMJPac5TxKqVwTCdQAZwJvBpYBM3DmJWWLbpwRsHuBm4FHicQSVhOpI6bNVjaIBDzACpwG6y04R0a5ZAtwC05BuZtIbMByHqVUNooE9oyuvwU4juxqrg6nDbgNp07eQSTWZTmPGgNtttzKGfI+A6dwvAlnDsFE0IMz4rUKWEUk1mI5j1LKrZwJ7Kfi1Mkzgel2A2XMIHA/Tp28mUhsg+U86jC02XKTSCAIfACncJyMXgFigCdxCsrfiMRetpxHKWVbJFACvBdnIvdppGYSe7aL4ox4/YNI7EnbYdT+tNlyg0hgEc5tEz4A5NsN42p340zg/JfNqxyVUhZEArOBC4D/wVmqQB3YU8A1wF+IxHpth1EObbZsiQS8wDuAzwInWU6TbbYDvwGuJRJrsh1GKZVGkcBpOHXyTHQh7rGIAX8AriYSix5uY5Ve2mxlWiRQCXwSOI+JM78gXeLAP4AfE4k9bTuMUipFIoEi4GyckayjLafJBXcAPyESu8t2kIlKm61MiQSOwTlV+CH0DurpcC/wY+A2F67WrJQaDWdZm88AHyf9619NRM8AlwN/16kYmaXNVrpFAicA38O5Ykal34vAxURi19sOopQapUgghFMn346zWLJKrybg+8CviMTitsNMBNpspUskMA+4DHin7SgT1L3AhbpgqlIuFgnUAd/BGcnSJivznsepk/fYDpLrtNlKtUigGrgY+DTgt5xmoosDvwa+SSTWbjuMUiopEigGvgB8ifTfVkwd3g3AF4nENtoOkqu02UqRcEPYJ8Z85rbmbedOGY7Pt51H7aUD+C7wCyKxIctZlJrQwg3hs3+1fccnVvQPnGw7i9rLAHAF8H0isW7bYXKNNlspEG4InwxcBRwzZ3DwoX9tbTnRdiZ1QI3A54nEbrcdRKmJJtwQPganTp5cEk+sfmRLc9h2JnVA24CvAX/Ui41SR5utcQg3hGuBnwAffuVJY8yvWlpfXNE/kGv3L8wlt+I0XboivVJpFm4IlwIRnLWyfHue//yu3Q//T6zrBFu51GE9DnyWSOwx20FygTZbRyjcEP4Y8FMgsO9rxYnEi49sbj5KcusmqLlmCGepiIv1Emil0iPcEH4jzgLEk/d9zWPM9kc2N5cVGaO323EvA/wO+JyeWhwfbbbGKNwQLsG5ZcyHD7XdZ3Z1PPTpWKeeTnS/h4AP6Er0SqVOuCHsAy4BvswhDjpf39N735Wt7a/NWDB1pNYA7yUSe952kGylzdYYhBvCxwJ/BxYcbluPMTse3txcXGyMXmnjfruAjxKJ3Ww7iFLZLtwQngb8DTj8KUJj+m9t3t4+bXh4atqDqfHqx1km4pe2g2QjbbZGKdwQPgfntGHBaN/z2t7ee3+xo/2UtIVSqfZT4Ct6xaJSRybcED4L+D1QOdr3TB8aeuSW5u0r0xZKpdrfgU8SiXXZDpJNtNk6jHBDuAy4FnjfmN9szMCq5u2tM4aHp6U8mEqXx4H3EYltsh1EqWwRbgj7gR8Cnz+S9/+ipfW51/b1H5vaVCqN1uHUSb0n7SjpHdQPIdwQXgI8zZE0WgAi+Z+uq9mW0lAq3Y4DniES0JX/lRqFcEN4JvAgR9hoAXyxprogAYmUhVLpNhd4mEjgAttBsoU2WwcRbghfADwMzBnPfrb6fcffVVT4TGpSqQwpB64nEvgFkUC+7TBKuVW4IfwOnJsbHzee/fR7PAt+XhF4KDWpVIbkAz8jErieSKDcdhi309OI+wg3hAuAPwLvTtU+8xOJtY9tbp7t1Xt/ZaOngbOIxHSEUqmkcENYcNYYvChV+xRj2h/c0uwvS5j9ltNRrrcJp06+YDuIW+nI1gjJxfduI4WNFsCAxzPvyopyPWrLTkuAB4gEZtkOopQbJJd1+AMpbLQAjEj1F2qCz6ZynypjZgL3EQkstx3ErbTZSgo3hCuBu4BT0rH/hkDp0TGPpyMd+1ZpNxun4QrZDqKUTeGGcD7wDw6zzuCRerQg/4R1fr/eDDk7VQL/JRLQddMOQJstINwQrgPuZZzzDg7FiFRdWFOtC8JlrynA/UQCS2wHUcqGcEO4CLgZeHvaPkTE/+m6YHva9q/SzTk7FAm82XYQt5nwzVa4ITwDeABI+01RnyzIP6Exz78+3Z+j0qYauJtI4DW2gyiVSeGGcAC4E3hDuj+r1edbvqq46Ml0f45Km0LgX0QC77UdxE0mdLMVbgjPx2m05mbkA0V859bWdGTks1S6BIA7iAROtx1EqUwIN4SDOCP/Gbtp9MXBqsoh5/6lKjv5gb8SCXzcdhC3mLDNVvLWOw8AGV1wtN3nXfqvkuLHM/mZKuWc0ym6FpfKceGG8FTgfmBRJj93UGT2j6oqHs7kZ6qU8wC/IhK40HYQN5iQzVa4IbwS50itxsbnf7e6skaP2rJeHnAdkcBHbAdRKh3CDeE5OAek9TY+/2+lJYt2eTw7bXy2ShkBfkokcLHtILZNuGYr3BB+Lc7cg3JbGYZEZl5aValHbdnPC/yeSOBc20GUSqVwQ7gep9GaaS2ESOAztcGXrH2+SqUIkcCPbYewaUI1W+GG8ALgX0Cx5ShcX1q8uN3rabOdQ42bAL/QU4oqV4QbwlXALcAk21lW5+ed+Hx+3hrbOVRKfJFI4Iu2Q9gyYZqt5DpaN2NxRGsvImXn1wa1iOQGD/AnIoEVtoMoNR7hhnAecAPO2nL2iXjOrw322Y6hUuZHRALvsR3ChgnRbCXvSP9PYJ7tLCO9lJd3wtP5eVHbOVRKFAI3EQmM616aSll2DXCy7RAjdXi9i/5aWvKo7RwqJQT4I5HAibaDZNqEaLaAq4DX2Q6xHxHPBbVBnSifO4I4C/pV2Q6i1FiFG8JfAj5mO8eB/LCqYuqA0G87h0qJfODfRALzbQfJJCvNlohsEpHVIvKsiDw54vmLRKQx+dpzInKFiPjH81nhhvDngU+OO3SadHq9C/9YVvqI7RwqZeYBNxIJjOvfrVIZrpNvAy4bd+g0iYtMvbi66jHbOVTKOPMCI4Fy20EyxebI1uuMMYuMMcsAROQc4HRghTEmDCwHWnFOzxyRcEP4TJw707va5ZXl0/tFdF5C7jgJuNJ2CJUTMlEnjwX+jMvPdNxSXLSsxettsZ1Dpcxc4G9EAq7+d5cqbvomvwGca4zpADDGDBpjLjPGdB7JzsIN4TDwV9z1PR5QXGTKN6srdaHT3HIekcAnbIdQOSfVdbIO58Ih61doH5ZI8bl1Qb3dWW45A/iB7RCZYKsRMcB/ROQpEfmUiJQCJcaYlNztPdwQrsEpIKWp2F8m3FFctHyrz7vNdg6VUlcRCay0HUJlrXTXyQKcpXAyeheN8Vjn95/waEH+C7ZzqJT6MpHA+2yHSDdbzdaJxpglwJuA84HFOIUFABE5IzlPYZOIjOl+XMlLl28EZqQycNqJFJ1bW7PJdgyVUnnA9UQC1tcrUlkpbXUy6TfA8amJmiEicmFtUMyIPweVE35LJHCs7RDpZKXZMsZsS/7aitMYHQf0iMis5PN3GGMWAS/g/Ic1FhEyeMPUVNqY5z/hwcKC523nGIumWILXNfQQuqqbo/+vm/99dACA51rirPxND+Gruznrr710Dhy4Nnb0G959XS/1v+gmdFU3jzQNA/CVO/tZeHU3H7nx1alsf3xu8JX9Z5FJwLW2Q6jsk846GW4Ifwz4YEoDZ0iPx3P0rwNlWXUHDq2Th1WEsyTEWP+/zxoZb7ZEpDg5HI6IFONM9nwB57zt1SJSnnxNgIKx7Dt5z8MvpzRwhn2hptqfTUdtPg9cfnoB0fNLePTjxVz1xBAvtcX5xM19XPb6fFafW8I76n38+KED//B/7vZ+3jjXR+NnSnjunGJCQS+xfsPDzXGeP7eEuDGs3hGnb8jw++eGOG95Vv4svoVI4MO2Q6jskeY6OYMsv4DjFxWBOT0i3bZzjJbWyVEJ48xJzEk2RrZqgQdF5DngceAWY8ztwNXAXcBjIvI88BDwTPJxWOGGcBHwB5z71WWtXo8ndHV54CHbOUZrUqmHJZOcP/LSfCEU9LC107CmPcHJM5zn3zDbx/XR4f3e2zlguH/zMB9f7Fy1nucVygsEj8Bg3GCMoW8I/F748cODfPa4PPxeydw3l1r/SyRQazuEyhrpqpMC/B4oS0foTEmI1H2lpuop2zlGS+vkqH2NSGCh7RDpkPFmyxizwRhzbPJxtDHm0uTzxhjzE2PMAmPMQmPMCcaYLxljYqPc9Y9xLiXNeteUly3oFumynWOsNnUkeGZ7nOOnejmmxstNa5zC8Y+XhmjqTOy3/YbdCYJFwsf+3c/iX3bziZv66Bk0lOYL7wr5WfzLHmaVewjkC09si/O2+qxeuqoSZ3FdpQ4rjXXyc8ApaQueQfcVFq7Y7PM12c4xVlonD8kP/I5IwGc7SKq5flmE0Qg3hE8DzrWdI1WMSPBLNdVZc9QG0D1oeNd1vVz5xgLK8oXfvq2Aq54YZOm13XQNOEdj+xpOwNPbE5y7zM8zny6h2C9c9qAzjP7lE/N59pwSLj+jgG/dM8B3T8nn108P8t5/9HLJ/Vk3H2GPd03U+4Ip+8IN4QXk0mX2Ivnn1NVstR1jLLROjsoS4Eu2Q6Ra1jdbydOH1+LccylnPFhYcMIGv2+z7RyjMRR3CsiHwn7eGXKOquqrvfzn7GKe+lQJHwj7mFOx/1/P1DJhaplw/FTnIObdR/l4umXvI7tntscBmF/l4Q/PDXHde4p4oTXO2p3xNH9XafMLIoFq2yHUxJI8ffgrxji/y+2a/b4V/y0qHNUpVNu0To7JxUQCIdshUinrmy2cqw9n2Q6RciJ559TV7LAd43CMMXz8pn5C1V4uWpn/yvOtPU4xSBjDJfcPcs6y/Sds1pV4mBbwsKbdKQj/3TjMUdV7/5P81j0DfPd1+QwlIJ68bMAj0Ju9d5SsAX5mO4SacD6Bc2eDnPPVYFVxHFzdVWidHLN8nOUgcqFHAbK82UreZuLztnOky3af77jbi4tcfTrxoaY4f3x+iLs3DrPomm4WXdPNrWuH+OvqIeb/vJv6X/QwuVT42CLnSG5bV4I3/7n3lff//E0FfOiGPhZe3c2zLQm+ftKrhehfjUMsn+xlcqmH8gJh5VQv4au7EYFj67L6OogPEAm81XYINTEkV4n/ke0c6dLv8cy/sqLc1UtBaJ08IiuAC22HSBUxJmtWGdhLuCHsAR7FuTdYzspPJNY9url5pg9ybsLgBLcNOJpIrMN2EJXbwg3hvwE5vUK3GLPzgS1bvYFEotx2FpVSfcBCIrF1toOMVzaPbJ1HjjdaAAMez9zLK8uzZikINWqTgctth1C5LdwQfiM53mgBGJGqz9dUP2c7h0q5Qpw7HWS9rBzZCjeEi4GNQNB2lkwQY3bfv2Ur5YlEhe0sKqUSQJhI7CXbQVTuSU6KfwbI6dugvMKY4X9sa9lcPzg0x3YUlXJnEYmtsh1iPLJ1ZOt8JkijBWBEKj5bW73adg6Vch7gYtshVM56BxOl0QIQ8Z1bW7PbdgyVFhHbAcYr65qt5KhWzq3BcTjP5Oef+GJe3lrbOVTKvZtI4GjbIVRuSY5qTbhGvt3nXfavkuInbOdQKbeUSOAs2yHGI+uaLeAzwMRbp0jEe15dMOtWlVeHpaNbKh3eCeTkbU8O57vVlcEhyN5FD9TBRGwHGI+sarbCDeES4Iu2c9iyy+td8s+S4sds51App6NbKmUm6qjWHkMiM79fVeHqpSDUEVmSzUvmZFWzxUQd1Rrh0urKukEYtJ1DpdSE/s9Rpdy7gLDtEDb9s7RkUbvX02Y7h0q5CJFAVt4tJmuarYk+qrXHsMiM71VXPmI7h0q5dxMJHGM7hMpuyVGtb9vOYZ1I4DO1wUbbMVTKLQbeZjvEkciaZgu4AKiyHcIN/lVSvKTV6221nUOllI5uqVR4NxN8VGuPF/PyTnw2P08brtxzcTaObmVFsxVuCJcCX7CdwzVESs+rDb5sO4ZKuXcRCeh/lOqI6KjWPkQ859cGB2zHUCm3CHi75QxjlhXNFjqqtZ81ef4TnyzI18Uwc4uObqnxeDegp6JH6PR6j/1TWalOu8g9WTe65fpmK9wQzgcusp3DdUTkszVBV9/pXh2RdxIJLLAdQmWlr9kO4EY/qSyf1i/SZzuHSqljgTfZDjEWrm+2gLego1oH1OX1hH8XKNVLnHOLAGfbDqGyS7ghvBBn8rDaR1xk6reqKx+3nUOl3P+zHWAssqHZ0v94DuHKivJZfSK9tnOolPpwtg2RK+u0Th7C7cVFy7f5vNtt51Ap9VYigYDtEKPl6mYr3BCuAt6c6c9t/k0z0QuirP3G/nfHab+tnRc++gLDXcMHfG/7He2s/fpa1n5jLU1XN5EYTADQcl0La7+5luZrm1/ZdvdDu2n/T/u4siZEJn09WKW3p8gtM4CTbYdQ2SHcEPYAH8z052ZTnUSk6Jzamo3j24lymQLgPbZDjJarmy3g/YA/0x9a8ZoKZn5h5n7PD+4cpPvFbvxVB440tHuInXfuZE5kDvMunYdJGGKPxYj3xuld18u8S5zn+pv6SQwm6Hiwg6pTx3+G9K6iwuOafd6t496RchMdqVCjdRowOdMfmm11cmOe/4SHCgtWj3tHyk2ypk66vdmy8gdZvKAYb7F3v+db/tpC7XtrD/lekzAkBhOYuMEMGnwVPhAwwwZjDGbIIF6h/bZ2qt5QhfhScLZIpPCcupot49+RcpH3EAkU2A6hsoLWyVG6qKbaa8CkZGfKDU4iEphpO8RouLbZCjeE5wPH286xR+cznfgr/BROLzzoNv4KP9VvrOblL7xM44WNeAo9lB5TirfQS9myMtZ/ez3+aj+eIg99G/ooW1KWsnyb/f6V9xcWPJeyHSrbysjSlZJV5oQbwsXAO2zn2MPtdbLX4znqmvKyh1K2Q2WbAB+2HWI0XNts4aI/wMRAgrab26h5R80ht4v3xOl6pov5P55P/U/rSQwk6Hi4A4Dgm4PM/d5cJn1gEq03tFLzzhp23beLLVdtofWm1CwG/8Wa6vwEJFKyM+UGWTNErqx5J1BsOwRkT528pjwwv1ukKyU7U26QFXXSlc1WciVk1zRbg62DDLYNsu5b61jzhTUM7R5i/cXrGeoY2mu77he78Vf78ZX5EJ9QtqyM3nV7XyjYt9lZ7iW/Lp+OhzqYfv50BpoHGGgZ/0LHfR5P/S8qAnrUljvOIBI49P9caqJzzX802VInEyI1X6qpfnrcO1JuMZ9I4DjbIQ7Hlc0W8Bpglu0QexRMKyD08xALLl/AgssX4K/wM+c7c/CX7z0B1F/lp299H4mBBMYYel7qIX9S/l7btN7QSs07ajDD5tUxKA+vXI0zXr8OlNV3eiSWkp0p23zAB2yHUO4UbghPBl5vO8ce2VQnHywsWLnB79uckp0pN/iI7QCH49Zmy+rRWtPVTWy4ZAMDLQM0fr6RXfftOui2Q7uH2HTFJgCK5hRRtryMdRevY90312EShopTKl7ZtvOpTgpnFeKv8OMt9lI4t5C133Qumz7UHIexMCLBL9ZUP5uSnSk3cM3IhXKdD2GxhmdznUQk75zampbU7Ey5wPuJBDK+csFYiDHuujAj3BD2Au1AueUo2cuYoRu3tjTPHRpyzeigGpcFRGJ643G1l3BD+Gl01fhxuXxH29On9/YtsZ1DpcRbiMRusR3iYNw4srUYbbTGR8R/Tl1wnKsAKhc53XYA5S7hhnAFsMh2jmz39WBVWRz0HrO5wdV10o3N1km2A+SCHT7f8luKi560nUOlxKm2AyjXORHnsnc1DgMez9zLK8v1oqLc4Oo6qc1WDvt2sKpyGA58vwyVTV5LJODGn1Vlj9bJFPlTWWm4w+PZbTuHGrej3Xz1thsL+GtsB8gVgyKzf1RVoUdt2a8SPWWk9qbNVooYkYrP1VY/bzuHGjcBXmc7xMG4qtkKN4QXAEHbOXLJX0tLFu3yeHbazqHGzbVFRGVWuCFcACy1nSOXPJ2ff+JLef51tnOocXNtnXRVs4UeraWeSOCC2uBLtmOosTOGRK/JW/NEYsH93xj6nzm28yjXOB7Isx0ip4j4zq2r6bQdQx2ZQePbuDox84FLhj7k2sEan+0A+9BmKw2ez887YXVe3svhwcH5trOogzOGgRjFa55MzN+1Kr6y5L+JxfO6KF4ALABCl8J5tjMqV9A6mQa7vN4l15cUP/6u7h7Xr0Y+kRlDvIeCNc8nZrfdmjg+//b48jntlM/CWQjd/Pqrt1RsuuxM183Bc1uzpfO10kHEe35dsOf+LVttJ1EjGENsBxUvP5Q4pvfm+MqKhxNHLxjEv/AgmwdnfvWW2ZsuO3NDRkMqN9I6mSaXVFfWntXdM5inI4euYQx9uyhtfDxR37kqvrLk3sSxC3ooPOogmwtwHHBHBiOOimuareStJ2bbzpGrdnu9i/9eWvLo+7q6V9jOMlHFjbRsNnUb7k4sHl4VX1H3nJk91+BZPoZdrAC02ZrAkos+n2A7R64aFplxSXXlvd9t33WK7SwTVcKweztVa++PL+xblVhZ/Viifv4wvrEs3rsCbbYOSYfG0+yyqoop7+jqHsiD/MNvrcZrwPg2rDHTtt4RXy63Jo6fsdFMmgbUjWOXxwN/SVE8lZ2OBUpth8hlN5YUL71gd0dbMJ5w7fyfXDJsPM0bzKQt/00sGb45vnLKS2bGbJDxnMo9PmXhUkibrQlkWGRapLrqvu+373yt7Sy5xhiGeyh4+dnE3LZbE8cV3BFfPmcngdmkdrRWRyWV1sl0Eyk9r7bmuX9sa9FmK8WMwQzgX/eimbn99vhxvtsSx81sNsGpwNQUfowrmy3X3Bsx3BB+GFhpO0fOM6b7zqZt3XXx+HhGWCY8Y+jdSdmaxxKh2M3xFWX3J45d0EtBcZo/th8o2nTZme74oVUZF24INwAfsZ0j5xljftfSGl3WP3CwuUFqFIxhsIuil59KzGu/JbGi6M740vkxSsoz8NHTN112ZlMGPmfU3DSypZe2Z4JIyXl1wedu2NqizdYYJIzs3EbV+vvjC/tuSqysfiJRvyCON9M3AS4AJgOjvtJBRAqA+3FOHfuAfxpjLk6+dhHwKWAISAD/Bb5ijBlKcW6VOlonM0FEPlsTjD+8pdl2kqxiDF1tlK95OHFUz83xlYGHEscs6Cf/GAtR5gCjbrYyUSdd0WyFG8IlgGuX2c81a/3+Ex4ryH/x+P6Bo21ncash423eYCZtvjOxNHFLfMWUqJk+C6TKdi6cIjKWy0oHgFONMd0i4gceFJHbcFakPx1YYYzpEJE84CKgEKeoKHfSZitDurye8O/LSh/+aGeXXpBwEHEjrU2mZsM9iUUDN8dX1j5r5s5L4FlmOxfOz8m9Y9g+7XXSFc0WWkAyS0QurA2ahzc3G9Gb2WIMiX7y1r1oZrbcFj/Od1v8uFnbqE71PIJUmYNzBDYqxpkn0J380p98GOAbwMnGmI7kdoPAZSlNqlIq3BAuZnwXWKgxurKyfOb7urp7C40psp3FDQaNb9NaM6X5P/FlrEqsmLbeTJmBOwdKxtRTZKJOarM1QXV7PMf8JlD20CdinSfazpJpxjDYSVHjk4kFu26JH198V2LJ/E5K5gPZsOjrmH9WRMQLPAXMBa4CXgJKjDEbU5xNpZcujZNhcZHJ3whW3XdFa/uEu6jIGOK95L/8fGJ2622J4/PviC+bvYPKmcBMy9FGw3V1UputCeznFYE5H+zs6ikyJt0Tu60yhs5Wyl9+KHFM96r4isqHEsfMHyDvYIuHut2Yf1aMMXFgkYiUAzeSXGl5z+sicgbwQ6Ac+KAx5uGUJFWppnXSgjuLCo9r9nm3Th2OT7GdJZ2MoW83pWseTyyIrYqvLLknsWh+D4UhIGQ72xFwXZ10RbP1lx8OTwa29Oaza3cJPS0VMry1Gs+WoBRtrZKKlgpqB/IkpxsCGxIidV8JVt338xw7aosb2bHZ1G64N7FoyJlHMGeeccc8glSYfqRvTM45uBdnDkKPiMwyxmw0xtwB3CEiq9CVs13rLz8cniqGrX357OwopntHhQw1V+FpCkrB1mopbymntqdQymznzDkihefU1WxZ1bw9p5qtPYuHPhAP9zqLh4bmD+FbZDtXiriuTrqi2fIlmAFML+tjelkfzGgz8DKMaCpJwO5BP61dhcTay+jfXimmKSh5TdWUbquS6p1l1BgRt91Y2/XuLSo8fovP1zx9eNiN85NGZdD4Nq4xU5uTi4dO32AmTwdqAczwIC1/+QJmeAgSCYoWnEj5SR/a6/2xx66n56V7nS8ScYZ2NjP1gj+DSdB2w6UkBropP+lsiuY7K5O0Xv89Kk8/D1+plfnyk8aysYgEgaFkASkETsM5OvsBcLWIvD/5muBc7ahcypdgGjClpJ8pJf0wdadh6ToYWScNdA75aO0uoGNnGX3bKiXRXC3+piAlW6ukqi1AbcIjrqj72WSz37/y/sKC507u6z/WdpYjNWw82zaauo3/TSyJ3xxfOflFM3POnsVDnTr5pVyqk9Uzv3qLf9NlZ45qEnsm6qRbfugmH24DD1QUDFFRMATBTgg1G/YpMsMJD9t789jZUUL3jnIZ2lqNZ0u1FG6tlvLtFdT0FehR335ECs6pCzbf2rw9K5qtw9yEdH9eP7Xv/z6evEJMfJiWP3+ZwtlLyZ9S/8omgePfReD4dwHQu+4xOp/4N97CUjqfvIniY06lOHQyrf+4mKL5K+ld9xh5tXNsFRAYY7OV3L4hOR/BA1xnjFmVLBpFwGMiMoAzOfQh4JmUplWpdNg6KVCWN0xZZTdUdsO8bfvVyURCaOnPoz1WTGdrQIa2ViFNQSlorpbA9kpquoqkIp3fRLb6Yk113qObmxMe5+fI1ZKLh65/yczYdkd8ue/WxPEzmkzNFA72byj36qTgHHCPdu2OtNfJrGm2DkfA500wpbSfKaX9MK3dsOwAR32DPnZ0F9Kxs5T+7ZWSaAqKv6makm0T+Kivye9fcXdR4bOn9vYtsp1lX2O8Cel+RATJK3T2lRiGRBzk4Bdg9rx0P8Whk533en2Y4UFMfAhEMIk4XU/+m+C7vj3O72pcCmZ+9ZbyTZed2TGajY0xzwP7rQeWvPrmJ8mHyg6pqJMer6GueIC64gGYvMuwaCPsUyd7hrzs6Clg965Serc7o2O+piDFW6uksrWcumGvTLjTzX0eT+iq8sCDF3TEXHcjcGMY6qJwzTOJee2rnMVD53VQOhdnsvdh5WCdBKeBGlWzlYk6ab2xiNaHhAxdzixQlj9MWX4XVHXB/P2P+uIJYXt/Hu0dxXS1lu911Fe+vYKa7iIpz0TWTPtKsKrw0c3NcS94beZIGNm1jap1D8TDR3oT0v2YRJztDRcyvHs7pUvOJH/yggN/9lA//RufovIN5wBQfNRrab/px/S8eDflr/0oXU/fQvHRr8fjt362bRLQYTuEyrixjmoeEYHivDiz83qgogfmtOxXJ40R2vr9tHUW0dkWkIFkncxvrpaybZUEYyVSnYmsmfar8rIFH411dpYaY/UsiTF0txFY80jiqO5V8ZWBBxLhcS8emqN10jWsN1s4K7b6bYcAEPB6DZOKB5hUPABTdhkWb4B9Ck138qivY2cZvdsrJNEcFF9TNSVbq6SiLUuP+vo9ngU/qyh/4PO7OzJ677Vh42lebyZv/m9iSWJVfMXkFNyEdD/i8TL5Yz8n0d9N642XMti2ibzgzP2261v3OPlTQngLnfv8evKLqXlPBIB4fzedj11P8B1fZ+dtPyPR303Zce8gf4qVC3UmAVEbH6yscsUNqAVEDMGiQYJFg1DXYQhvhn3qZP+wl5befHbvKk1e9FSFrykoRc1VUrGjgrpBvxRa+yaOkBEJfqGm+r5rd7Rl9KKihJG2JhNcf2/i2MFV8ZXBp8z8+Qk8S1P5GTlaJ13DDc1WVjUmAiV5cUr2HPXN3X7Ao77Wfj9tsWK69jnqC2yvJBgrdsVK5Pv5XaD0qP+JxWKBhAmkY/8ZugnpQXkKSiiYFqZvw9MHLCI90fspPurANTT20F8JrHwvPS/dR17dXIqPOoXWG75H3Qd+kObUB6RzDyemrKmVAgX+ODMDvcwM9MKsHXtq5F4XPe0c8NPWVUSsLcDANueip/ymakq3V0lwVwlB5BDnsix5pLDghPV+36Y5Q8Mz0/UZg8a7ea2Z2nRnYqm5NX78tJfNtJlARm6MrXUyPdzQbLliVCtVkkd9NUWD1BQNwqTdhoWbYJ+GrG/YS0tP8qhvR4UkmqvxNgWleM9R35BPMj4Ga0SqLqoJ3vebltaUHLUd5Cak84B5qdj/aMR7Y4jHi6eghMTQAP2bn6Xs+Hfvt11ioIeBpheofssX93ttaNdW4t27KJgeZrB1A+LLB5wreCzJqZ8ZNWo59ffugarCIaoKY1ATg6O37HfgOhj3sKM3n10dJXS3lO+1JFB5SyW1/XlSkvHgIv5z6mra7mzaNjMVuzOGRB/5Lz9vZu+4LX5c/h3x5bNaqJwBzEjF/kdD62T6uaHZypqjtVQRKPTHmVXey6zyXph94KO+9oERcyK2VWGc0THKtlVK9e40HfU9XpB/whq/f8OCoaExr1btopuQviLevYv2W34KJgEmQVH9SRTNPY6uZ24FoHTxmwHoffkRCmYuxpO3f4/bcf8fKT/5bACKQ6+l7YZL6HryJgL7XBqdQa4qIipjJlStFMjzJZhW1se0sj6Y3mZgLezTkHUMOEsCdezcsySQs9RF6bZKZ0mghEdSPg+1xedbfmtx0ZNv7ukd8/p9xtDfQcmaJxILdt+cXDy0m6J6oP6wb06THK2TbuhvXiHOZHt7ovWh6cBmqyGyUPKoryUdC8EGh4efvLtp22GLSPImpOvvSSwaXBVfUfuMmTcvgcfqBPsJ4qObLjuzwXYIlVnR+tAAE6zhGi8Dwwlhx4EWgm2ulvKWCmp7j3BJoLyEWf/Y5qYZvsP8p54wdLRQ+fKD8XDfzYmVlY8mjlowhE//HtPvkk2Xnfkt2yH2cEPnp0fpRyB51JeWhWDbfL5lN5UUP/HW7p7lI5/PopuQ5jr9mZmY9O99jAR8XpOehWAHPTLnR5UV93991+6TRz4/bDzbN5m6jf9NLB6+Jb5i0vNm9txUX/SjRsVVPy9uaLa0w0+T8SwE+49AYPA1A/4X1sq8HfckjpW7EkvqdlBRxYj5VqWww8K3NeElsDsarTIvWh/y4SzUqFJsjAvBdrU6Fz15moJS8Hxlccm2fvNcq2fGrvvNscN3xJfUbaE2yIh785VCq4Vva8IzmITtDCO5odlyVfc5kRxuIdjtUjo4VF5m5tdU7qyuKOgZyM+fjOTmOmNZxg0/tyqztE5acriFYDsojveVla6dUVOx411VRd19BXl1iCcjVw6qQ3LVQI4birYWEZfymHhe1e5ouGq3s6STAdNVOn3tjuDS7TurjvH1FgVnIV5XrWUyQYzqfl8qp2iddCnBeMs7N9SXd26oZ90/AOgpqt3cGlza1Fa9kJ7iSVONxzfTbsoJyVV10g3Nlk6ozhICUta1ZV5Z15Z58zbcCEBvQfXWtuDiTa3BRYmekimTE+Kb7ca1cXKMq4qIygitk1mkuHfHjFmbb50xa7NzNd9AXqC1rfrYDa3BxQNdZTNq4p68+Ujqr5JUe3FVnXRDs9VpO4A6ckX97VNmNN05ZUbTnQAM+kt2tlcvXNcaXNIfK5tZHfcWzEfE2lH50PAgV950IcPxIeImzuJZJ3Pm8o/utc1dz/6dJ9b9F4BEIk5LxxYu+8j1JEyCX/3nYvoGunnL8o9x7Cznlmi/vP1bvO+kz1FebO2OJK4qIiojumwHUEcufzBWM3Xb/TVTt90PwLA3v2tn5TEv76hZ0hUrn1sx5Cuej9hbUT9H6+SwrQ8+EDc0WzttB1CpkzfUXTV5+8NVk7c/DEDck9e7szL0YmvN0o7d5fPKhvylC5AjW5LiSPi8fj571uXk+wuJx4e54qbPcdT045hV++q9rE9b9D5OW/Q+AFZveph7Vl9PcUEZ966+gePnn87SOa/j/279KsfOeg2rNz3MtOp5NgsIaLM14YQao8PR+lAMSMvdHVRm+eIDpbVtTy2tbXsKgIR4BzvK563eUbN0166K+sKB/Ir5mZwfq3Uy/dzQbO3CmWmop55ykDcxWFTT/tyimvbnAEiIZzhWNvul1pqlbTsrjyroL6icg3jS9hMpIuT7nQPGeGKYeGIYOcQ/tSfX38PSuac62T0+hoYHGI4PISLEE3HuWX0D57zxknTFHS1XFRGVMTvRZisneUw8r3J3Y7hydyOQnB9bMm1da83Sbe1Vx3h7i2pmId7J6fp8rZPpZ73ZCjVG48kjtnLbWVT6eUzCVxFbd1RFbN0rz3UXT97YGlyytb06TE9R3XTj8U1P5WcmEnF+eMO5tMW2cvLRb2Nm7YFvijo41E+06Qnee+IFACybeyq/v/v7PPbynbz9+E/ywIv/5rj5byDP/t3sd9kOoKzYCYz5zg4q+whIWXfT3LLuprlzN/wLgL6Cqq2twcWb2oKLEt3FUyYlPP45qZwfq3Uyvaw3W0k70WZrwirp2TarpGfbrNmbVgHQn1/e0la9aGNrcPFgV+m0SQlP3lwOsPjqaHk8Xr727mvpHejmV//5Ntt2bWRy5az9tlu9+RFm1x5NcYGzoHRhfgnnvun7APQOdHHnc3/jk6d/h7/cdzm9A12cuvA9zK47+khjjcd2Gx+qrNMpFxNYYf/OKTOa7poyo+kuAAb9xbvaqxaua61Z0hcrm1UV9xYsGM/8WK2T6eWmZmvOYbdSE0LBQEfdtK331k3bei8AQ97C2M7qY9buCC7piQXmlA/7iuoRyR/rfovyS5g3aREvNT1xwCLy1Iih8X3d9tQfOWPxh3hy3d1MC85n2dxTufaOb/G5s64Ya4xUcFURURmjzZZ6Rd5QT+XklkeOm9zyCODMj91VWf/ijuDSjo6K+aWDzvzYMd+oW+tkerip2VLqgPzxvkDdjieW1e14AoCE+AZ2V8x/fkfN0t27K+qLBvIC8xE54FyWrr4OvB4fRfklDA4PsGbrU5y26P37bdc30M267c/z/0792n6vtcaaifXsZN7kY2neuQ6/Nx9BGLJzN/uu8685tWe0G4tItzGmZJ/nIsAngbYRT59ijOkQkdcAVwB77hd3hTHm2nFmVqmhdVIdlDcxWBRsf35RsP15AAwSjwVmR3fULG3dWXlUfn9B1ZyDLbaag3USxtBsZaJOuqXZctW5VeVuHjOcX7XrpYVVu14CwCCJztIZL7fWLGlprzrG11cYnI146gA6e3fyx3t+RMLEMcawZM5rCc9YyQMv3QzASUedBcBzmx6kfurSVyaJjnTz47/lrOP+ByB5pPZt7n3hBs5c9tFMfLv7StXR2k+NMT8Z+YSI1AF/Ad5ujHlaRKqBO0RkqzHmlhR9rjpyWifVqAnGWx5bHyqPrX9l8lV30aSNrTVLtrZXL6SnqG6a8fhmQE7WyTh7N0lHKmV1Uoyxf5+1aH3of4HP2s6hckdvYbCpNbhkc1v1saa7ZPIU4/HnysTi+86/5tRTRrvxIY7Yug9QRL4HGGPMt0c893ogYow5aVyp1bhF60OfAX5uO4fKHf155TvagsduaAsuHuwsnV6X8OTNG8/8WBfZdv41p04Z7caZqJNuGdnaajuAyi1FfW3TZm65Y9rMLXcAMOgvbW+rPnZ9a3Bxf2fZzGDcmz8fEbf8+x+LTSnaz+dF5MPJ3+82xrwOOBpo2Ge7J5PPK/u0TqqUKhjsqJ229b7aaVvvA2DYW9DZXnXMy601S3s6nPmxCxCxflnhEdiUov2krE665T+bl2wHULktb6iresr2B6unbH8QgLgnr2dn5VHP76hZ2tnx/9u78+i86jqP4++bpRtN0yVJaSlCN3h+IFBKHbczjlYWZ9xXXHFQDzJWzzDoCII4oMOiUHBkkI6DAjKoKDuIgIxsMlpa9uV3odS0tLbN0jZJ0yzNcuePeykttJDtyffe535e5+QAD23yyWn76+f53d8yeX51T+XEgwmCCcYxB2L1CH2eV02PE591t6epbvvpbwGNk1JkFX1dk/ZtXLlo38aVQHzY6tbJBz3VWHfU5i1TCvt0j5281/WxKZO6cTItZetp6wCSL+X9O/apa358YV3z40By2Gr13Gca6hY1b5nqxneNnTKXoGyabco9GqlBZE+eARYBt+7y2lHoL/m0eAHoBga9E1dkKMqivjHTtvrDpm31QHLYatUbVjXUHbVx89Q3VnRMqJ1NUD7DOOaepG6cTEvZWgtsB0btGheRXZVF/RVTWlYdOqVlFRAPKu377Lc6PsH5sLKOCdMPiMrKZxnHhOIOIpcBy4MguDGKoseDIJgGfB/4bhG/pgxQcgB0CBxhnUXyKYBg0rYX50/a9uL8+atvAqBjfM36ZH1s//aJ+83sL6tMwzFOqRsnU7FAHsAX3MPAm6xziOxN59ipG5tqF9Q31S7o3TZx/xn9ZZXzRvIE5wGqXbJscfNAf3AQBP3Ahl1eemm78iu3NH8oiqI1QRC8A1gKVBFPl/8wiqLLhx9bRoIvuGuBT1vnENmbHZUTNyfrYzvbJh1Ykxy2OtoTO29bsmzxnwb6g0djnExT2foZcKJ1DpGB6qkY39o87fDnG+sWdrROmjOlt2J8gSAYU8Qv2bpk2eLJRfz8knK+4L4FnGedQ2Sg+srGdGye6p5rrDuqdevk+dU9lVUHEQTFfopVt2TZ4pE4+mHEpOUxIsTPQUUyo7K3s3pGw/I3zWhYDkBfWUXX1smFJxvqFm7ZOuXgiTviw1Ynvc6nGYxHR/BzSTZpnJRMKe/fMaGu+Ykj65qfAJL1sZPmPttQd1TTlqlubNe4qfMIympG8EuuT1vRgnSVLS2Sl0wr7+8dV7Pl6cNrtsS/lSOC/rZJBz7XUHfUps1TDx3TOb5mLkFZ3TC+xJ9HJqlkmMZJybSyqL9iSuuqQ6a0rtr5Wvs+M+sbaxeub6o5POiYsO8BUVn5/sP4EqkcJ9NUtvSOTUpKQFRW3VZ/cHVb/cFwPQDbx09f21h35PrmmiP62/eZOSsqq3j15WN7t7w4SSVD6oEOIAvHlIgMyMTtG2ZP3L5h9pw1twPQNXbKxsbaBfVNNQt6t1XtP32Qh62mcpxMzZotAF9wW4HJ1jlERkt3ZVVTU+2C1Y21R3ZvqzqgLjlstXwvP3zfJcsWN4xqQEkdbSaSvInXxx62qrF2YXtr9ZypyWGrezsC5W+XLFv8x1ENOABpmtkCeAD4gHUIkdEytmdb7awND9bO2vAgAL3lY9s3Tz30uca6he0t1fMm9VROLBAE44G1KlqSeACVLcmReH3sw4tmNDwMQH9Q0b11ykFPNtQt2rIlXh87PzlstRd4xDTsXqStbN2DypbkWEVf98TpTY8eNb0pXgvfH5T1tFTPf2bztEN+B4uN00lK3AN83TqEiJWyqHfstC3PHj5tS3yOaETQ31Z1wHNNtQtWvv+O8zuN4+1R2i6c/L11AJE0KYv6K6e2PHfo/NU3vWCdRVLjAeKT5EWEZH3stjUHz/vLzZuss+xNqsqWC30IrLfOIZJC91oHkHRwoe8ABnxgo0iOpHacTFXZStxjHUAkZTa40D9vHUJSRU8BRHbXBzxoHWJvVLZE0u8+6wCSOhonRXb3iAt9m3WIvUlr2UrPeRQi9u6yDiCpsxLYah1CJEVSPU6mrmy50DegU5JFXtIN3GwdQtLFhb6fFK9PETFwnXWA15K6spXQegSR2J1pnhoXUxonRWLPuNCn+haatJatG60DiKTEr6wDSGrdQrwoWCTvUj2rBSktWy70DwE6V0jyrgO4zTqEpJML/UY0uyUCKlvD8nPrACLGfutCv906hKTa1dYBRIw9noWjcdJetrQrUfIs9e/WxNzNQKt1CBFDmRgnU1u2XOjXAvdb5xAx0g7cYR1C0s2Fvgv4tXUOEUMqWyPgKusAIkZudaFP5YWqkjp6lCh5tcKFvt46xECkvWzdAGjNiuTR/1gHkGzQhiLJscyMk6kuWy707cSFSyRPQuBO6xCSKdpQJHnTClxpHWKgUl22Epoil7y52IVem0NkMLShSPLmJy7026xDDFQWyta9QKpPhhUZQY3ANdYhJFuSDUU6k03yogf4kXWIwUh92Ure4Z9nnUNklPw42WEmMljnWgcQGSW/dqFfbx1iMFJfthLXoQWgUvo6gcusQ0g2udA/jE6Ul3y4yDrAYGWibLnQ9wEXWOcQKbKfu9A3W4eQTNPslpS6P7jQP24dYrAyUbYSPwdetA4hUiQRcIl1CMk2F/r7gQetc4gU0VLrAEORmbLlQt8DXGidQ6RIbnehf846hJQEzW5JqfLA76xDDEVmylbiCmCTdQiRERahvyBlhLjQ3wWstM4hUgTnZvVYnEyVrWSXVianEEVewy9d6Jdbh5CSovIupeZh4BfWIYYqU2UrsQzQImIpFZ3A6dYhpOTcAjxpHUJkBJ2S1VktyGDZSq7wOcM6h8gIuciFfp11CCktyV9K/2ydQ2SE/MqF/k/WIYYjc2UrcQWgxy6SdRuA71uHkNLkQn8fGX7sIpLoAk6zDjFcmSxbybu2rwB91llEhuEMF/rt1iGkpH0daLMOITIMS13oM3/sUybLFoAL/aPA5dY5RIboEeKz40SKxoV+E3CWdQ6RIdpIiRxontmylfg20GAdQmQIMr3YUzLlMuBx6xAiQ3Bmsk478zJdtlzoW4F/tc4hMkjXudD/0TqE5ENy3dlXiM9zE8mKlcDV1iFGSqbLFoAL/TXAA9Y5RAZoE/BV6xCSL8lOriutc4gMUCdwggt9v3WQkVJhHWCELAEeo3S+nwHpiyI+vnYN0ysquHzW/viuLs5p2ER3FFFBwFnTp3P4+PGv+nlnbtzI/dvbmVpezq2z5+x8fWlTIw+2b6cwbiwXzJgJwK2trbT29/G5KVNH7fsqcSfqsmkxchrwISBXf5g1TmbSaS703jrESMr8zBaAC/3TwPesc4y2a7ZuZe6YsTv/e2lTI1+ZVsNNB87mqzU1LG1q3OPP+3B1NT+Ztf9ur23r6+Oxzk5unj2bvgie7+6iq7+fm9pa+eTkKUX9PnLkMhf6O61DSD4lJT93s6oaJzPnLuA/rUOMtJIoW4lzgdysg9nU08P929v5aHX1ztcCArb3x7Ou7f391FVU7vHnLpowgery3X/pywLoiSKiKKI76qeCgJ9t2cJnJ0+hMgiK943kR4jWF4oxF/pfkqNdsBonM2cz8ex/ya0vLJmylSwC/QzQYhxlVFzQ2Mg3auso2+XP9+l1dVzY1Mji1S9wYVMjp9TWDvjz7VNWzrETq/jI2jXsV1lJVXk5T3d18u6qqiKkz50e4LMu9J3WQUSIl12stg4xGjROZs6XXeg3WocohpIpWwDJwWcnWecotvva25laUc6h48bt9vqvWlo4va6OP8ydx2m1dZy1aXC/Z784bRo3HTib0+qm86PmJr5aU8v1LS38y4a/smyzlhkNwzku9I9YhxCBnVeefYr4TUDJ0jiZOVe70N9gHaJYSqpsAbjQ/4b4suqS9WhnB/e2t3P06hf4+oYNLO/o4JsbNnBLWyvHTIzfYb2nqoqnurqG9PmfTX7egWPGcEtbK5fM3I9V3d2s2bFjxL6HHHmIEjmUT0qHC/0KSvwCdI2TmVIPfM06RDGVXNlKnEJ8RkdJOrW2jnvnzuOeufNYOnMmb54wgR/MnEldRQUrOjsA+HNHBwdU7nktwuu5tLmJr9XU0BtF9CdPzssI6OovmV24o2UL8LnkEbdIqrjQXwyU7EyCxsnM2EG8zGKbdZBiKsmy5ULfDXyM+C+73Dhn+r78oLGRD6+p54fNTZyz7wwAGnt7+PL6dTt/3Dc2/JVPrV3Lmh07eNfqF7ihpWXn/7tn2zbeOG48dRWVTCov54jx4/lgfT0AhVdMx8tr6gE+4kJfbx1E5DV8AVhlHWI0aZxMnZNc6P/POkSxBVFUcov+d/IF9/fA7ZRoqZRUO9GF/irrECKvxxfcYcCfgQnWWSR3znOhP9M6xGgo6RLiQv874keKIqPpAhUtyQoX+qeA44Fe6yySK78hvt84F0q6bAG40F8KnG+dQ3LjeuAM6xAig+FCfzs52MktqbGc+Dqe0n209gol/RhxV77gfkq8PkGkWB4G3qnztCSrfMF9CzjPOoeUtLXAm13oG6yDjKaSn9naxUnAbdYhpGStBT6goiVZ5kJ/PvAj6xxSstqA9+WtaEGOylay/f54oOR3PcioawPen8cBRErSKcB11iGk5PQCxyd3GedObsoWQDLr8H7gWessUjJagGOSRcYimZesozkB+F/rLFIydgCfcKG/0zqIldys2dqVL7j9iWe4ZllnkUzbDBzrQv+odRCRkeYLrgq4D1hoHEWyrRv4qAv9b62DWMrVzNZLXOjXAe8iviJAZCiagMUqWlKqkhO9jwNWWGeRzOokXsua66IFOS1bAC70LwBvB/T4RwZrE/Guwyetg4gUkwt9M7AY+L11Fsmc7cB7Xejvtg6SBrktWwAu9BuBdwB/tM4imfFX4O9c6LXuT3LBhb4deB9aNC8Dtw14jwv9vdZB0iLXZQvAhb4FOJb4Wh+R17IWeIcL/fPWQURGkwv9DuDTwI+ts0jqtRKvZdUkxi5yuUB+T3zBVQBXAJ+3ziKp9BxwnAv9WusgIpZ8wf0bcLZ1DkmlBuJHh49YB0mb3M9svcSFvhc4EbjIOoukzm3A36hoiYAL/TnAEqDfOoukygpgkYrWnmlmaw98wZ0K/AAot84ipiLge8DZebrDS2QgfMF9HLgKmGAcRexdBZzsQt9tHSStVLb2whfcO4FfADOMo4iNbcQXpd5sHUQkrXzBHQr8BnDWWcREL3CqC/2l1kHSTmXrNfiCm05cuBZbZ5FRtQr4kHYcirw+X3D7AMuAz1pnkVHVBHzchf5+6yBZoLL1OnzBlQHfAc5Ca9zy4A7gM8kuVREZIF9wXwIuBcZZZ5GiexT4sAv9i9ZBskJla4B8wR0NXAvUWWeRougHzge+40Kvhb8iQ+AL7nDix4oHWWeRorka+KfkrmEZIJWtQfAFNwP4JfB31llkRK0GPu9C/5B1EJGsS+5U/AnwSessMqKaiBfB32gdJItUtgbJF1w5cAZwJjDWOI4MTwRcDnzThX67dRiRUpI8VrwQmGwcRYbvJuDLLvRN1kGySmVriHzBzQcuA46xziJDUg+c5EJ/j3UQkVKVbDJaCnzGOosMSTNwigv9tdZBsk5la5h8wX0KuBjY1zqLDEgf8a/X2S70HdZhRPLAF9xi4llkreXKjmuIj3Votg5SClS2RoAvuGrgPOBktGMxzR4FvuRC/5h1EJG88QU3FjgN+BbasZhm9cRrs+62DlJKVLZGkC+4NxGfN7PQOovsZi3xXW7XuND3GWcRyTVfcPOIl2Aca51FdrOZeEf2ZS70XdZhSo3K1ghLFtCfTLyIfqZxnLxrBM4FlrnQ77AOIyIv8wX3CeC7wMHWWXKuHbgEuMiFvs06TKlS2SoSX3DjgC8RT5vPMo6TN23EF4pf4kLfbh1GRPYsOTT6k8C30ZU/o20H8ZOYc13oG63DlDqVrSLzBTcG+CJwOvAG4zilrov48cT5LvSbrcOIyMAkpetjxDd1vNE4TqnrI178frYL/VrrMHmhsjVKfMFVAv9I/HjxQNMwpaedePA4z4V+vXUYERkaX3AB8BHi0nWEcZxSswO4Afh33fs6+lS2RpkvuArgBOAbaNp8uJ4h3k5+jdYaiJSOpHR9kHgZxluM42Tdi8B/AT91oW+wDpNXKluGfMG9BfgCcDwwyThOVvQANwKX67Z5kdLnC+4Q4nHyc+hu2oGKgLuBHwO/1S5seypbKeALbgLxeoUTie9dDGwTpdI64vvW/lvvzkTyJ3kq8F7i4vUPQIVtolTaDFxJvAN7tXUYeZnKVsr4gptDXLo+D+xvHMfaRuA24Gbgbr07ExHYeQ3QCcRjZd6XY2wF7gBuAW7TGVnppLKVUsnunLcDxyUfC8nH6fRPEw8atwIrXOj1G1RE9soX3ELgPcTj5FuBSttEo6KeeIy8BXjQhb7XOI+8DpWtjPAFVwMczcvla4ZtohHTCzxIPHDc6kL/F+M8IpJRvuCqgHfx8jg51zbRiImAlSRvRF3onzLOI4OkspVRvuAOIx5MjgYWAdNsEw3Yi8CKXT5WaiehiBSDL7i5xOPkMcCbyc6b1AaS8TH55woX+ibbSDIcKlslwhfcG4Ajk48FxOsY5gLlhrEaeXWx0knFImIiWeu16zh5CHAQMMYwViu7lCriYrXOMI8UgcpWCUtOr59PXLzmALVATfKx679XD+HTtwHr9/KxDljvQt8yvO9ARKS4kvts5xCPk/OIj5d45ThZC0xm8DvFO9j7OLkeWOdC3zzsb0JST2VLXjrd/qXBpZJ4HdVrfXS50HfYpBURGX1JKZtGXLzG8vrj5A7dzSovUdkSERERKaI8HCUgIiIiYkZlS0RERKSIVLZEREREikhlK8WCIJgcBMH1QRCEQRD4IAjemrx+avLaU0EQPBEEwcVBEOTh1GQRkd1onJQs0EWe6fYfwJ1RFH0sCIIxwIQgCE4GjgXeEkVRS/L6qcB4oMcwq4iIBY2TknrajZhSQRBMAp4A5kS7/CIFQbAOeEcURfVm4UREUkDjpGSFHiOm1xygCbgyCILHgiC4IgiCamCiBhAREUDjpGSEylZ6VQALgcujKDoS2A6cTXwhKQBBEBwXBMHjQRCsCYLgbTYxRUTMaJyUTFDZSq/1wPooipYn/3098R1e24MgmA0QRdFdURQtAJ7G9m4vERELGiclE1S2UiqKok3AuiAIDk5eejfwLHA+cHkQBJMBgiAIgHEmIUVEDGmclKzQbsR0+xpwbbKT5i/AiUALMAFYHgRBN9AOPAQ8ZhVSRMSQxklJPe1GFBERESkiPUYUERERKSKVLREREZEiUtkSERERKSKVLREREZEiUtkSERERKSKVLREREZEiUtkSERERKSKVLREREZEiUtkSERERKSKVLREREZEiUtkSERERKSKVLREREZEiUtkSERERKSKVLREREZEiUtkSERERKSKVLREREZEiUtkSERERKSKVLREREZEiUtkSERERKaL/B5RXlYDpjw0MAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plt.pie(rank_1_freq, labels=RATs, autopct='%1.1f%%')\n", + "# plt.title('Distribution of Users Across Networks')\n", + "# plt.show()\n", + "\n", + "fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 8))\n", + "\n", + "for i, service in enumerate(services):\n", + " row = i // 2\n", + " col = i % 2\n", + " ax = axes[row, col]\n", + "\n", + " # Extract data for the current service\n", + " network_names = RATs\n", + " user_counts = rank_1_freq\n", + "\n", + " # Create the pie chart\n", + " ax.pie(user_counts, labels=network_names, autopct='%1.1f%%')\n", + " ax.set_title(f'{service}')\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] } ], "metadata": { diff --git a/simulation_data/pairwise_matrices.csv b/simulation_data/pairwise_matrices.csv index 1f54d2b..842c7ae 100644 --- a/simulation_data/pairwise_matrices.csv +++ b/simulation_data/pairwise_matrices.csv @@ -19,7 +19,7 @@ J,0.33,1,3,5 L,0.200,0.333,1,3 T,0.143,0.200,0.333,1 ,,,, -equal_importance,,,, +Equal Importance,,,, Criteria,D,J,L,T D,1,1,1,1 J,1,1,1,1