-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon.rs
146 lines (125 loc) · 4.57 KB
/
common.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
use rand::seq::SliceRandom;
use crate::{
algorithm::{crossover, initialize_random, mutate, Algorithm, Mutant},
function::Function,
};
use std::{cmp::max, fmt::Display};
#[derive(Debug, Copy, Clone)]
pub struct Common {
pub mu: usize,
pub crossover_probability: f64,
pub mutation_rate: f64,
}
impl Common {
pub fn new(mu: usize, crossover_probability: f64, mutation_rate: f64) -> Common {
Common {
mu,
crossover_probability,
mutation_rate,
}
}
}
impl Display for Common {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(
f,
"(μ + 1), μ = {}, p_c = {}, p_m = {}",
self.mu, self.crossover_probability, self.mutation_rate,
)
}
}
impl Algorithm for Common {
fn initialize<F: Function>(&self, function: &F) -> Vec<Mutant> {
initialize_random(self.mu, function)
}
fn fitness_evaluations(&self, iterations: usize) -> usize {
iterations + self.mu
}
fn iterate<F: Function>(&self, population: &mut Vec<Mutant>, function: &F) {
super::mu_plus_one_iterate(
self.crossover_probability,
self.mutation_rate,
function,
population,
|_n, population| {
let min_fitness = population.iter().map(|x| x.fitness).min().unwrap();
let min_indices: Vec<usize> = population
.iter()
.enumerate()
.filter(|(_, x)| x.fitness == min_fitness)
.map(|(x, _)| x)
.collect();
let remove_index = *min_indices.choose(&mut rand::thread_rng()).unwrap();
population.swap_remove(remove_index);
let len = population.len();
population.swap(remove_index, len - 1);
},
)
}
fn stopping_criterea<F: Function>(population: &[Mutant], function: &F) -> bool {
function.best_fitness() <= population.last().unwrap().fitness
}
}
impl Common {
pub fn launch_with_fitness_inspection<F: Function>(&self, function: &F) -> Vec<(i64, i64)> {
let mut population = self.initialize(function);
let mut best_fitness = population.iter().map(|x| x.fitness).max().unwrap();
let mut best_crossover = population
.iter()
.enumerate()
.flat_map(|(i, x)| {
population
.iter()
.enumerate()
.filter(move |(j, _)| i != *j)
.map(move |(_, y)| (x, y))
})
.map(|(x, y)| {
let mut clone = x.bitvec.clone();
clone.or(&y.bitvec);
function.fitness(&clone)
})
.max()
.unwrap();
let mut results = vec![(best_fitness, best_crossover)];
while best_fitness < function.best_fitness() {
let p: f64 = rand::random();
let x = super::get_random(&population);
let z = if p <= self.crossover_probability {
let y = super::get_random(&population);
mutate(&crossover(x, y, 0.5), self.mutation_rate)
} else {
mutate(x, self.mutation_rate)
};
let new_mutant = Mutant::new(z, function);
population.push(new_mutant.clone());
// breaking ties
let min_fitness = population.iter().map(|x| x.fitness).min().unwrap();
let min_indices: Vec<usize> = population
.iter()
.enumerate()
.filter(|(_, x)| x.fitness == min_fitness)
.map(|(x, _)| x)
.collect();
let remove_index = *min_indices.choose(&mut rand::thread_rng()).unwrap();
population.swap_remove(remove_index);
// updating results
if remove_index != population.len() {
best_fitness = max(best_fitness, new_mutant.fitness);
let new_best_crossover = population
.iter()
.take(population.len() - 1)
.map(|x| {
let mut clone = x.bitvec.clone();
clone.or(&new_mutant.bitvec);
function.fitness(&clone)
})
.max()
.unwrap();
best_crossover = max(best_crossover, new_best_crossover);
results.push((best_fitness, best_crossover));
}
}
results
}
}