-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathone_plus_lambda_lambda.rs
81 lines (65 loc) · 2.17 KB
/
one_plus_lambda_lambda.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
use std::fmt::Display;
use probability::{distribution, prelude::Inverse};
use rand::seq::IteratorRandom;
use super::{crossover, initialize_random, Algorithm, Mutant};
use crate::function::Function;
#[derive(Debug, Copy, Clone)]
pub struct OnePlusLambdaLambda {
lambda: usize,
mutation_rate: f64,
crossover_bias: f64,
}
impl Display for OnePlusLambdaLambda {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(
f,
"(1 + (λ, λ)), λ = {}, c = {}",
self.lambda, self.crossover_bias,
)
}
}
impl OnePlusLambdaLambda {
pub fn new(lambda: usize, mutation_rate: f64, crossover_bias: f64) -> OnePlusLambdaLambda {
OnePlusLambdaLambda {
lambda,
mutation_rate,
crossover_bias,
}
}
}
impl Algorithm for OnePlusLambdaLambda {
fn initialize<F: Function>(&self, function: &F) -> Vec<Mutant> {
initialize_random(1, function)
}
fn fitness_evaluations(&self, iterations: usize) -> usize {
iterations * 2 * self.lambda
}
fn iterate<F: Function>(&self, population: &mut Vec<Mutant>, function: &F) {
let x = population.first().unwrap();
// mutation phase
let l =
distribution::Binomial::new(function.n(), self.mutation_rate).inverse(rand::random());
let x_dash = (0..self.lambda)
.map(|_| {
let mut x_dash_bitvec = x.bitvec.clone();
let indices = (0..x.bitvec.len()).choose_multiple(&mut rand::thread_rng(), l);
for i in indices {
x_dash_bitvec.set(i, !x_dash_bitvec[i]);
}
Mutant::new(x_dash_bitvec, function)
})
.max_by_key(|x_dash| x_dash.fitness)
.unwrap();
// crossover phase
let y = (0..self.lambda)
.map(|_| {
let y_bitvec = crossover(&x_dash.bitvec, &x.bitvec, self.crossover_bias);
Mutant::new(y_bitvec, function)
})
.max_by_key(|y| y.fitness)
.unwrap();
if y.fitness >= x.fitness {
population[0] = y;
}
}
}