-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathe_chess.cpp
256 lines (212 loc) · 6.65 KB
/
e_chess.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#include <iostream>
#include <limits>
#include <vector>
#include <queue>
#include <list>
class Net {
public:
class Edge {
public:
Edge(size_t to, size_t x, size_t y, int maxcapacity) : to(to), maxcapacity(maxcapacity), x(x), y(y) {}
int get_capacity() const {
return maxcapacity - flow;
}
Edge* reverse = nullptr;
int flow = 0;
const int maxcapacity;
const size_t to, x, y;
};
Net(size_t initial_size = 0, bool oriented = true) : oriented(oriented) {
edges.resize(initial_size);
}
std::list<Edge>& operator[](size_t index) {
return edges[index];
}
void add_connection(size_t from, size_t to, size_t x, size_t y, int maxc = 1) {
size_t update = std::max(from, to);
if (update >= edges.size()) {
edges.resize(update + 1);
}
insert(from, to, x, y, maxc);
if (!oriented) {
insert(to, from, x, y, maxc);
}
}
size_t size() const {
return edges.size();
}
const bool oriented;
size_t start = 0;
size_t finish;
private:
std::vector<std::list<Edge>> edges;
void insert(size_t from, size_t to, size_t x, size_t y, int maxc) {
edges[from].push_back(Edge(to, x, y, maxc));
edges[to].push_back(Edge(from, x, y, 0));
edges[from].back().reverse = &edges[to].back();
edges[to].back().reverse = &edges[from].back();
}
};
std::pair<bool, std::vector<int>> bfs(Net& net, int capacity) {
std::vector<int> level(net.size(), std::numeric_limits<int>::max());
level[net.start] = 0;
std::queue<int> q;
q.push(net.start);
while (!q.empty()) {
int v = q.front();
q.pop();
for (auto& e: net[v]) {
if (level[e.to] == std::numeric_limits<int>::max() && e.get_capacity() >= capacity) {
level[e.to] = level[v] + 1;
q.push(e.to);
}
}
}
return {level[net.finish] != std::numeric_limits<int>::max(), std::move(level)};
}
int dfs(int v, Net& net, std::vector<std::list<Net::Edge>::iterator>& block,
std::vector<int>& level, int mincapacity = std::numeric_limits<int>::max()) {
if (v == net.finish) {
return mincapacity;
}
if (mincapacity == 0) {
return 0;
}
for (auto it = block[v]; it != net[v].end(); ++it) {
if (level[it->to] != level[v] + 1) {
continue;
}
int flow_get;
if (flow_get = dfs(it->to, net, block, level, std::min(it->get_capacity(), mincapacity))) {
it->flow += flow_get;
it->reverse->flow -= flow_get;
return flow_get;
}
++block[v];
}
return 0;
}
double dinic_iter(Net& net, int capacity) {
double result = 0;
auto [keep_going, level] = bfs(net, capacity);
while (keep_going) {
std::vector<std::list<Net::Edge>::iterator> block(net.size());
for (int i = 0; i < net.size(); ++i) {
block[i] = net[i].begin();
}
double flow;
while (flow = dfs(net.start, net, block, level)) {
result += flow;
}
auto pr = bfs(net, capacity);
keep_going = pr.first;
level = pr.second;
}
return result;
}
double dinic(Net& net) {
int maxcap = std::numeric_limits<int>::max();
double answer = 0;
while (maxcap) {
answer += dinic_iter(net, maxcap);
maxcap >>= 1;
}
return answer;
}
void full_dfs(Net& net, bool* accessible, size_t v) {
if (accessible[v]) {
return;
}
accessible[v] = true;
for (auto e: net[v]) {
if (e.maxcapacity != e.flow) {
full_dfs(net, accessible, e.to);
}
}
}
class Hatch {
public:
Hatch(bool ld, size_t x, size_t y) : left_down(ld), x(x), y(y) {}
const bool left_down;
const size_t x, y;
};
std::vector<Hatch> paint_table(std::vector<std::vector<bool>> const& table, size_t width, size_t length) {
Net net((width + length) * 2);
net.start = 0;
net.finish = (width + length) * 2 - 1;
size_t diagonals = width + length - 1;
for (size_t i = 0; i < width; ++i) {
for (size_t j = 0; j < length; ++j) {
if (table[i][j]) {
net.add_connection(i - j + length, i + j + length + width, i, j);
}
}
}
for (size_t i = 0; i < width + length - 1; ++i) {
net.add_connection(net.start, i + 1, 0, 0);
net.add_connection(i + width + length, net.finish, 0, 0);
}
dinic(net);
bool visited[net.size()];
std::fill(visited, visited + net.size(), false);
full_dfs(net, visited, net.start);
std::vector<Hatch> result;
for (size_t i = 1; i < diagonals + 1; ++i) {
if (visited[i]) {
continue;
}
for (auto e: net[i]) {
if (e.flow != 1) {
continue;
}
result.emplace_back(true, e.x, e.y);
}
}
for (size_t i = diagonals + 1; i < net.finish; ++i) {
if (!visited[i]) {
continue;
}
for (auto e: net[i]) {
if (e.flow != -1) {
continue;
}
result.emplace_back(false, e.x, e.y);
}
}
return std::move(result);
}
void reverse_table(std::vector<std::vector<bool>>& table, size_t width, size_t length) {
for (size_t i = 0; i < width; ++i) {
for (size_t j = 0; j < length; ++j) {
table[i][j] = !table[i][j];
}
}
}
std::pair<bool, std::vector<Hatch>> normalize_table(std::vector<std::vector<bool>>& table, size_t width, size_t length) {
auto first = paint_table(table, width, length);
reverse_table(table, width, length);
auto second = paint_table(table, width, length);
return first.size() < second.size() ? std::make_pair(true, std::move(first)) : std::make_pair(false, std::move(second));
}
int main() {
size_t width, length;
std::cin >> width >> length;
std::vector<std::vector<bool>> table(width, std::vector<bool>(length));
for (size_t i = 0; i < width; ++i) {
for (size_t j = 0; j < length; ++j) {
char c;
std::cin >> c;
table[i][j] = c == 'B' ? !((i + j) & 1) : (i + j) & 1;
}
}
auto [white, result] = normalize_table(table, width, length);
std::cout << result.size() << '\n';
for (auto i: result) {
bool colour = ((i.x + i.y) & 1);
if (white) {
colour = !colour;
}
std::cout << i.left_down + 1 << ' ' << i.x + 1 << ' ' << i.y + 1 << ' ' << (colour ? 'W' : 'B') << '\n';
}
return 0;
}