-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathauthorship_attribution_output_graph.py
141 lines (121 loc) · 5.74 KB
/
authorship_attribution_output_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# File : core.classifiers.RCNLPTextClassifier.py
# Description : Echo State Network for text classification.
# Auteur : Nils Schaetti <nils.schaetti@unine.ch>
# Date : 01.02.2017 17:59:05
# Lieu : Nyon, Suisse
#
# This file is part of the Reservoir Computing NLP Project.
# The Reservoir Computing Memory Project is a set of free software:
# you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Foobar is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with Foobar. If not, see <http://www.gnu.org/licenses/>.
#
import io
import os
import argparse
import matplotlib.pyplot as plt
import pickle
import numpy as np
import Oger
import mdp
from core.converters.RCNLPPosConverter import RCNLPPosConverter
from core.converters.RCNLPTagConverter import RCNLPTagConverter
from core.converters.RCNLPWordVectorConverter import RCNLPWordVectorConverter
from core.converters.RCNLPFuncWordConverter import RCNLPFuncWordConverter
from core.classifiers.RCNLPEchoWordClassifier import RCNLPEchoWordClassifier
from core.tools.RCNLPLogging import RCNLPLogging
#########################################################################
# Experience settings
#########################################################################
# Exp. info
ex_name = "Authorship Attribution Experience"
ex_instance = "Author Attribution"
# Reservoir Properties
rc_leak_rate = 0.05 # Leak rate
rc_input_scaling = 0.25 # Input scaling
rc_size = 100 # Reservoir size
rc_spectral_radius = 0.99 # Spectral radius
rc_w_sparsity = 0.1
rc_input_sparsity = 0.1
####################################################
# Main function
####################################################
if __name__ == "__main__":
# Argument parser
parser = argparse.ArgumentParser(description="RCNLP - Authorship attribution with Echo State Network")
# Argument
parser.add_argument("--dataset", type=str, help="Dataset's directory.")
parser.add_argument("--author1", type=str, help="Author 1' ID.")
parser.add_argument("--author2", type=str, help="Author 2's ID.")
parser.add_argument("--lang", type=str, help="Language (ar, en, es, pt)", default='en')
parser.add_argument("--converter", type=str, help="The text converter to use (fw, pos, tag, wv).", default='pos')
parser.add_argument("--pca-model", type=str, help="PCA model to load", default=None)
parser.add_argument("--in-components", type=int, help="Number of principal component to reduce inputs to.",
default=-1)
parser.add_argument("--lr1", type=float, help="First leaky rate", default=0.1)
parser.add_argument("--lr2", type=float, help="Second leaky rate", default=0.05)
args = parser.parse_args()
# Logging
logging = RCNLPLogging(exp_name=ex_name, exp_inst=ex_instance,
exp_value=RCNLPLogging.generate_experience_name(locals()))
logging.save_globals()
logging.save_variables(locals())
# PCA model
pca_model = None
if args.pca_model != "":
pca_model = pickle.load(open(args.pca_model, 'r'))
# end if
# >> 1. Choose a text to symbol converter.
if args.converter == "pos":
converter = RCNLPPosConverter(resize=args.in_components, pca_model=pca_model)
elif args.converter == "tag":
converter = RCNLPTagConverter(resize=args.in_components, pca_model=pca_model)
elif args.converter == "fw":
converter = RCNLPFuncWordConverter(resize=args.in_components, pca_model=pca_model)
else:
converter = RCNLPWordVectorConverter(resize=args.in_components, pca_model=pca_model)
# end if
# W matrix
w = mdp.numx.random.choice([0.0, 1.0], (rc_size, rc_size), p=[1.0 - rc_w_sparsity, rc_w_sparsity])
w[w == 1] = mdp.numx.random.rand(len(w[w == 1]))
# >> 4. For each leak rate
for index, leaky_rate in enumerate((args.lr1, args.lr2)):
print("Leaky rate %f" % leaky_rate)
# >> 5. Prepare training and test set.
training_set_indexes = np.arange(1, 100, 1)
test_set_indexes = np.array([0])
# >> 6. Create Echo Word Classifier
classifier = RCNLPEchoWordClassifier(size=rc_size, input_scaling=rc_input_scaling, leak_rate=leaky_rate,
input_sparsity=rc_input_sparsity, converter=converter, n_classes=2,
spectral_radius=rc_spectral_radius, w_sparsity=rc_w_sparsity, w=w)
# >> 7. Add examples
for author_index, author_id in enumerate((args.author1, args.author2)):
author_path = os.path.join(args.dataset, "total", author_id)
for file_index in training_set_indexes:
classifier.add_example(os.path.join(author_path, str(file_index) + ".txt"), author_index)
# end for
# end for
# >> 8. Train model
classifier.train()
# >> 9. Test model performance
author_index = 0
author_id = args.author1
author_path = os.path.join(args.dataset, "total", author_id)
print("Testing model performances with %d text files for author from %s..." % (test_set_indexes.shape[0],
author_path))
classifier.pred(os.path.join(author_path, str(0) + ".txt"), show_graph=False, print_outputs=True)
# Delete variables
del classifier
# end for
# end if