-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathauthorship_attribution_two_authors_leaky_rate.py
240 lines (204 loc) · 9.79 KB
/
authorship_attribution_two_authors_leaky_rate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# File : core.classifiers.RCNLPTextClassifier.py
# Description : Echo State Network for text classification.
# Auteur : Nils Schaetti <nils.schaetti@unine.ch>
# Date : 01.02.2017 17:59:05
# Lieu : Nyon, Suisse
#
# This file is part of the Reservoir Computing NLP Project.
# The Reservoir Computing Memory Project is a set of free software:
# you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Foobar is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with Foobar. If not, see <http://www.gnu.org/licenses/>.
#
import io
import os
import argparse
import matplotlib.pyplot as plt
import pickle
import numpy as np
import Oger
import spacy
import mdp
from core.converters.RCNLPPosConverter import RCNLPPosConverter
from core.converters.RCNLPTagConverter import RCNLPTagConverter
from core.converters.RCNLPWordVectorConverter import RCNLPWordVectorConverter
from core.converters.RCNLPFuncWordConverter import RCNLPFuncWordConverter
from core.classifiers.RCNLPEchoWordClassifier import RCNLPEchoWordClassifier
from core.tools.RCNLPLogging import RCNLPLogging
from core.tools.RCNLPPlotGenerator import RCNLPPlotGenerator
#########################################################################
# Experience settings
#########################################################################
# Exp. info
ex_name = "Authorship Attribution"
ex_instance = "Two Authors Exploring Leaky Rate"
# Reservoir Properties
rc_leak_rate = 0.1 # Leak rate
rc_input_scaling = 0.25 # Input scaling
rc_size = 100 # Reservoir size
rc_spectral_radius = 0.99 # Spectral radius
rc_w_sparsity = 0.1
rc_input_sparsity = 0.1
####################################################
# Functions
####################################################
def get_n_token(text_file):
t_nlp = spacy.load(args.lang)
doc = t_nlp(io.open(text_file, 'r').read())
count = 0
# For each token
for index, word in enumerate(doc):
count += 1
# end for
return count
# end get_n_token
####################################################
# Main function
####################################################
if __name__ == "__main__":
# Argument parser
parser = argparse.ArgumentParser(description="RCNLP - Authorship clustering with Echo State Network")
# Argument
parser.add_argument("--dataset", type=str, help="Dataset's directory.")
parser.add_argument("--author1", type=str, help="Author 1' ID.")
parser.add_argument("--author2", type=str, help="Author 2's ID.")
parser.add_argument("--lang", type=str, help="Language (ar, en, es, pt)", default='en')
parser.add_argument("--converter", type=str, help="The text converter to use (fw, pos, tag, wv).", default='pos')
parser.add_argument("--pca-model", type=str, help="PCA model to load", default=None)
parser.add_argument("--in-components", type=int, help="Number of principal component to reduce inputs to.",
default=-1)
parser.add_argument("--step", type=float, help="Step for reservoir size value", default=50)
parser.add_argument("--min", type=float, help="Minimum reservoir size value", default=10)
parser.add_argument("--max", type=float, help="Maximum reservoir size value", default=1000)
parser.add_argument("--training-size", type=int, help="Training size", default=90)
parser.add_argument("--sentence", action='store_true', help="Test sentence classification rate?", default=False)
parser.add_argument("--k", type=int, help="n-Fold Cross Validation.", default=10)
args = parser.parse_args()
# Logging
logging = RCNLPLogging(exp_name=ex_name, exp_inst=ex_instance,
exp_value=RCNLPLogging.generate_experience_name(locals()))
logging.save_globals()
logging.save_variables(locals())
# PCA model
pca_model = None
if args.pca_model != "":
pca_model = pickle.load(open(args.pca_model, 'r'))
# end if
# >> 1. Choose a text to symbol converter.
if args.converter == "pos":
converter = RCNLPPosConverter(resize=args.in_components, pca_model=pca_model)
elif args.converter == "tag":
converter = RCNLPTagConverter(resize=args.in_components, pca_model=pca_model)
elif args.converter == "fw":
converter = RCNLPFuncWordConverter(resize=args.in_components, pca_model=pca_model)
else:
converter = RCNLPWordVectorConverter(resize=args.in_components, pca_model=pca_model)
# end if
# >> 3. Array for results
success_rate_avg = np.array([])
success_rate_std = np.array([])
# >> 2. Prepare training and test set indexes.
n_fold_samples = int(100 / args.k)
indexes = np.arange(0, 100, 1)
indexes.shape = (args.k, n_fold_samples)
# Leaky rates
leaky_rates = np.arange(args.min, args.max+args.step, args.step)
# W matrix
w = mdp.numx.random.choice([0.0, 1.0], (rc_size, rc_size), p=[1.0 - rc_w_sparsity, rc_w_sparsity])
w[w == 1] = mdp.numx.random.rand(len(w[w == 1]))
# For each reservoir size
for leaky_rate in leaky_rates:
print("Leaky rate %f" % leaky_rate)
# Average success rate for this leaky rate
leaky_rate_average_success_rate = np.array([])
# >> 4. n-Fold cross validation
for k in range(0, args.k):
# >> 5. Prepare training and test set.
test_set_indexes = indexes[k]
training_set_indexes = indexes
training_set_indexes = np.delete(training_set_indexes, k, axis=0)
training_set_indexes.shape = (100 - n_fold_samples)
# >> 6. Create Echo Word Classifier
classifier = RCNLPEchoWordClassifier(size=rc_size, input_scaling=rc_input_scaling, leak_rate=leaky_rate,
input_sparsity=rc_input_sparsity, converter=converter, n_classes=2,
spectral_radius=rc_spectral_radius, w_sparsity=rc_w_sparsity, w=w)
# >> 7. Add examples
for author_index, author_id in enumerate((args.author1, args.author2)):
author_path = os.path.join(args.dataset, "total", author_id)
for file_index in training_set_indexes:
classifier.add_example(os.path.join(author_path, str(file_index) + ".txt"), author_index)
# end for
# end for
# >> 8. Train model
classifier.train()
# >> 9. Test model performance
success = 0.0
count = 0.0
for author_index, author_id in enumerate((args.author1, args.author2)):
author_path = os.path.join(args.dataset, "total", author_id)
for file_index in test_set_indexes:
file_path = os.path.join(author_path, str(file_index) + ".txt")
author_pred, _, _ = classifier.pred(os.path.join(author_path, str(file_index) + ".txt"), show_graph=False)
# Success rate
if not args.sentence:
author_pred, _, _ = classifier.pred(os.path.join(author_path, str(file_index) + ".txt"))
if author_pred == author_index:
success += 1.0
# end if
count += 1.0
else:
# Sentence success rate
nlp = spacy.load(args.lang)
doc = nlp(io.open(file_path, 'r').read())
for sentence in doc.sents:
sentence_pred, _, _ = classifier.pred_text(sentence.text)
if sentence_pred == author_index:
success += 1.0
# end if
count += 1.0
# end for
# end if
# end for
# end for
# >> 10. Log success
logging.save_results("Success rate ", (success / count) * 100.0, display=True)
# >> 11. Save results
leaky_rate_average_success_rate = np.append(leaky_rate_average_success_rate, [(success / count) * 100.0])
# Delete variables
del classifier
# end for
# >> 10. Log success
logging.save_results("Leaky rate ", leaky_rate, display=True)
logging.save_results("Success rate ", np.average(leaky_rate_average_success_rate), display=True)
logging.save_results("Success rate std ", np.std(leaky_rate_average_success_rate), display=True)
# Save results
success_rate_avg = np.append(success_rate_avg, np.average(leaky_rate_average_success_rate))
success_rate_std = np.append(success_rate_std, np.std(leaky_rate_average_success_rate))
# end for
for index, success_rate in enumerate(success_rate_avg):
print("(%d, %f)" % (leaky_rates[index], success_rate))
# end for
for index, success_rate in enumerate(success_rate_std):
print("(%d, %f)" % (leaky_rates[index], success_rate))
# end for
# Plot perfs
plot = RCNLPPlotGenerator(title=ex_name, n_plots=1)
plot.add_sub_plot(title=ex_instance + ", success rates vs leaky rate.", x_label="Nb. tokens",
y_label="Success rates", ylim=[-10, 120])
plot.plot(y=success_rate_avg, x=leaky_rates, yerr=success_rate_std, label="Success rate", subplot=1,
marker='o', color='b')
logging.save_plot(plot)
# Open logging dir
logging.open_dir()
# end if