-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathword_embeddings_generator.py
64 lines (52 loc) · 1.94 KB
/
word_embeddings_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# File : core.classifiers.RCNLPTextClassifier.py
# Description : Echo State Network for text classification.
# Auteur : Nils Schaetti <nils.schaetti@unine.ch>
# Date : 01.02.2017 17:59:05
# Lieu : Nyon, Suisse
#
# This file is part of the Reservoir Computing NLP Project.
# The Reservoir Computing Memory Project is a set of free software:
# you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Foobar is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with Foobar. If not, see <http://www.gnu.org/licenses/>.
#
import argparse
from core.embeddings.Word2Vec import Word2Vec
from core.embeddings.WordPredictionDataset import WordPredictionDataset
####################################################
# Main function
####################################################
if __name__ == "__main__":
# Argument parser
parser = argparse.ArgumentParser(description="RCNLP - Word Embeddings (Vector) generator")
# Argument
args = parser.parse_args()
# Word2Vec
word2vec = Word2Vec(dim=10, mapper='sparse', sparsity=0.2)
# Wordprediction dataset generator
dataset = WordPredictionDataset(word2vec=word2vec)
# Add examples
dataset.add(u"Hello, what is your name?")
dataset.add(u"When do you want to go to Disneyland?")
dataset.add(u"Hi! What's up?")
# Data
data = dataset.get_dataset()
print(type(data))
print(len(data))
print(type(data[0]))
print(len(data[0]))
print(data[0][0])
print(data[0][1])
print(word2vec[u'DisneyLand'])
# end if