-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
259 lines (216 loc) · 10.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import gc
import torch
import torch.utils.data
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import _LRScheduler
from dataset import denormalize, get_paths, get_data_loader, Dataset
from matplotlib import pyplot as plt
from model import CNN
from config import Config
def calculate_accuracy(output: torch.Tensor, labels: torch.Tensor):
"""
Calculates the accuracy of the model's predictions.
Args:
output (torch.Tensor): The model's output logits of shape (batch_size, 2).
labels (torch.Tensor): The true labels of shape (batch_size, 1).
Returns:
float: The accuracy of the model's predictions.
"""
_, preds = torch.max(output, dim=1)
# Ensure labels are the same shape as preds
labels = labels.view(-1)
correct = torch.sum(preds == labels).item()
accuracy = correct / labels.size(0)
return accuracy*100
class GradualWarmupScheduler(_LRScheduler):
"""
Gradual Warmup Scheduler class.
Gradually increases the learning rate (LR) from a small value to a target value
over a specified number of epochs. After the warmup period, the LR follows the
specified after_scheduler.
Args:
optimizer (torch.optim.Optimizer): Wrapped optimizer.
multiplier (float): The target LR is the initial LR multiplied by this value.
total_epoch (int): Number of epochs for the warmup phase.
Methods:
get_lr: Calculates the LR for the current epoch.
step: Updates the LR at the end of each epoch.
"""
def __init__(self, optimizer: torch.optim.Optimizer, multiplier: float, total_epoch: int):
self.multiplier = multiplier
self.total_epoch = total_epoch
self.finished = False
super(GradualWarmupScheduler, self).__init__(optimizer)
def get_lr(self):
"""
Computes the learning rate for the current epoch.
If the current epoch is within the warmup period, the learning rate is calculated as a linear
interpolation between the initial learning rate and the target learning rate. After the warmup
period, the learning rate is set to the target learning rate.
Returns:
list: List of learning rates for each parameter group.
"""
if self.last_epoch < self.total_epoch:
return [base_lr * (1 + self.last_epoch / self.total_epoch *
(self.multiplier - 1)) for base_lr in self.base_lrs]
return [base_lr * self.multiplier for base_lr in self.base_lrs]
def step(self, epoch=None):
"""
Updates the learning rate.
This method should be called at the end of each epoch to update the learning rate.
It internally calls the _LRScheduler's step method to update the learning rate.
Args:
epoch (int): The current epoch number.
"""
super(GradualWarmupScheduler, self).step(epoch)
def train(model: torch.nn.Module,
device: torch.device,
train_loader: DataLoader,
criterion: torch.nn.CrossEntropyLoss,
optimizer: torch.optim.Adam,
epoch: int,
total_epochs: int):
"""
Train the model for one epoch.
Args:
model (nn.Module): The CNN model.
device (torch.device): The device to run the model on.
train_loader (DataLoader): DataLoader for the training dataset.
criterion (nn.Module): Loss function.
optimizer (torch.optim.Optimizer): Optimizer for training.
scheduler (_LRScheduler): Learning rate scheduler.
epoch (int): Current epoch number.
total_epochs (int): Total number of epochs.
Returns:
float: The average training loss for the epoch.
"""
model.train()
training_batch_losses = []
for i, batch in enumerate(train_loader):
imgs, labels = batch[0].to(device), batch[1].to(device)
optimizer.zero_grad()
outputs = model(imgs)
loss = criterion(outputs, labels.view(-1))
loss.backward()
optimizer.step()
if i % 10 == 0:
acc = calculate_accuracy(outputs, labels)
print("T_Epoch: [%d/%d], Step: [%d/%d], Loss: %.3f, Acc: %.3f "
% (epoch + 1, total_epochs, i, len(train_loader), loss.item(), acc))
training_batch_losses.append(loss.item())
avg_train_loss = sum(training_batch_losses) / len(training_batch_losses)
return avg_train_loss
def evaluate(model: torch.nn.Module,
device: torch.device,
val_loader: DataLoader,
criterion: torch.nn.CrossEntropyLoss,
epoch: int,
total_epochs: int):
"""
Evaluate the model.
Args:
model (nn.Module): The CNN model.
device (torch.device): The device to run the model on.
val_loader (DataLoader): DataLoader for the validation dataset.
criterion (nn.Module): Loss function.
epoch (int): Current epoch number.
total_epochs (int): Total number of epochs.
Returns:
float: The average validation loss for the epoch.
list of tuples: List of (image, true label, predicted label) for visualization.
"""
model.eval()
val_batch_losses = []
val_images = []
with torch.no_grad():
for i, batch in enumerate(val_loader):
imgs, labels = batch[0].to(device), batch[1].to(device)
outputs = model(imgs)
loss = criterion(outputs, labels.view(-1))
if i % 10 == 0:
acc = calculate_accuracy(outputs, labels)
print("V_Epoch: [%d/%d], Step: [%d/%d], Loss: %.3f, Acc: %.3f "
% (epoch + 1, total_epochs, i, len(val_loader), loss.item(), acc))
val_batch_losses.append(loss.item())
# Collect images and labels for visualization
_, preds = torch.max(outputs, 1)
for img, label, pred in zip(imgs.cpu(), labels.cpu(), preds.cpu()):
val_images.append((img, label.item(), pred.item()))
avg_val_loss = sum(val_batch_losses) / len(val_batch_losses)
return avg_val_loss, val_images
def plot_and_save_images(images: torch.Tensor, output_dir: str, grid_size=(5, 10)):
"""
Plot and save images in a grid with true and predicted labels.
Args:
images (list of tuples): List of (image, true label, predicted label).
output_dir (str): Directory to save the plot.
grid_size (tuple of int): Grid size for plotting (rows, columns).
"""
fig, axes = plt.subplots(*grid_size, figsize=(15, 15))
axes = axes.flatten()
for ax, (img, true_label, pred_label) in zip(axes, images):
img = denormalize(img)
color = 'green' if true_label == pred_label else 'red'
ax.imshow(img)
ax.set_title(f"True: {true_label}, Pred: {pred_label}", color=color)
ax.axis('off')
plt.tight_layout()
plt.savefig(os.path.join(output_dir, f'CNN-B{config.BATCH}-L-{config.LR}-E{config.EPOCHS}-validation_images.png'))
plt.close()
if __name__ == '__main__':
"""
This script performs the following steps:
1. Initializes the setup and device configuration.
2. Loads the training and validation datasets and creates DataLoaders.
3. Sets up the CNN model, loss function, optimizer, and learning rate scheduler.
4. Trains the model for a specified number of epochs, evaluates it, and prints the
learning rate, training, and validation metrics.
5. Saves the model checkpoints and plots the training and validation losses.
6. Plots and saves the validation images with true and predicted labels at the end of training.
"""
config = Config()
device = config.DEVICE
checkpoints_dir = "checkpoints"
plots_dir = "training_output_images"
os.makedirs(checkpoints_dir, exist_ok=True)
os.makedirs(plots_dir, exist_ok=True)
print('Loading dataset...')
normal_train_paths, red_train_paths, normal_test_paths, red_test_paths = get_paths()
train_dataset = Dataset(red_train_paths, normal_train_paths, type="train")
train_loader = get_data_loader(train_dataset, batch_size=config.BATCH)
val_dataset = Dataset(red_test_paths, normal_test_paths, type="val")
val_loader = get_data_loader(val_dataset, batch_size=config.BATCH)
print('Setting up the model...')
cnn = CNN().to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(params=list(cnn.parameters()), lr=config.WARMUP_LR)
scheduler = GradualWarmupScheduler(optimizer,
multiplier=config.LR / config.WARMUP_LR,
total_epoch=config.WARMUP_EPOCHS)
print("Beginning training...")
training_losses, val_losses = [], []
all_val_images = []
for epoch in range(config.EPOCHS):
current_lr = optimizer.param_groups[0]['lr']
print(f'Epoch {epoch+1}/{config.EPOCHS} started. Current learning rate: {current_lr:.4f}')
avg_train_loss = train(cnn, device, train_loader, criterion, optimizer, epoch, config.EPOCHS)
avg_val_loss, val_images = evaluate(cnn, device, val_loader, criterion, epoch, config.EPOCHS)
training_losses.append(avg_train_loss)
val_losses.append(avg_val_loss)
if epoch+1 == config.EPOCHS:
all_val_images.extend(val_images)
torch.cuda.empty_cache()
gc.collect()
scheduler.step()
# save model after every epoch
torch.save(cnn.state_dict(), f"{checkpoints_dir}/CNN-B{config.BATCH}-LR-{config.LR}-E{epoch+1}.pt")
plt.plot(training_losses, label='Training Loss')
plt.plot(val_losses, label='Validation Loss')
plt.title('CNN Training')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.savefig(f"{plots_dir}/CNN-B{config.BATCH}-L-{config.LR}-E{config.EPOCHS}.png")
# Plot and save validation images with true and predicted labels
plot_and_save_images(all_val_images, plots_dir, grid_size=(10, 10))