-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMS_Molecular_Ion_Split.py
144 lines (122 loc) · 4.66 KB
/
MS_Molecular_Ion_Split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
###################### MS MOLECULAR PEAK SPLIT PATTERN PREDICTOR ################################
formula = 'C14H9Cl5' # Spaceless format, case-sensitive. Ex: 'C14H9Cl5'
deuterium = False # Utilizes two isotopes for Hydrogen. EXPENSIVE!
plot = True # Generate a plot that shows molecular ion splitting pattern
nanopeaks = False # Plot and display minuscule peaks below 0.05 % relative abundance
#################################################################################################
from isotopic_abundances import pt
import matplotlib.pyplot as plt
import numpy as np
import time
import re
t0 = time.time()
if not deuterium:
pt['H'] = {1:100}
flattened = [] #parser for chemical formula interpretation
def flatten(l):
for i in l:
if type(i) == list:
flatten(i)
else:
flattened.append(i)
return flattened
parsed = re.findall('[A-Z][^A-Z]*', formula)
parsed = [re.split('(\d+)',i) for i in parsed]
parsed = flatten(parsed)
for i in parsed:
if i == '':
parsed.remove(i)
# print(parsed)
for i in range(len(parsed)): #adding '1' for single atoms like 'Cl' and 'O' in 'C2H3OCl'
if i != len(parsed) - 1:
if not parsed[i].isdigit() and not parsed[i+1].isdigit():
parsed.insert(i+1, '1')
else:
if not parsed[i][0].isdigit():
parsed.insert(i+1, '1')
# print(parsed)
# exit()
atoms=[]
for i in range(len(2*parsed)): #adding '1' for single atoms like 'Cl' and 'O' in 'C2H3OCl'
if i != len(parsed) - 1:
try:
if not parsed[i].isdigit() and not parsed[i+1].isdigit():
parsed.insert(i+1, '1')
except:
pass
else:
if not parsed[i].isdigit():
try:
parsed.insert(i+1, '1')
except:
pass
for p in range(len(parsed)):
if p % 2 == 0:
atoms.append(parsed[p])
abundance=[]
for p in range(len(parsed)):
if p % 2 != 0:
abundance.append(int(parsed[p]))
atoms_verbose = []
for atom in range(len(atoms)):
for _ in range(abundance[atom]):
atoms_verbose.append(atoms[atom])
# print(atoms)
# print(abundance)
# print(atoms_verbose)
def cartesian_product(args, repeat=1):
# cartesian_product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
# cartesian_product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
t1 = time.time()
pools = [tuple(pool) for pool in args] * repeat
result = [[]]
for pool in pools:
result = [x+[y] for x in result for y in pool]
for prod in result:
yield tuple(prod)
t2 = time.time()
print(f'-> Cartesian Function took {round(t2 - t1, 2)} s')
cartesian_list = [np.asarray(list(pt[atoms_verbose[i]].values()))/100 for i in range(len(atoms_verbose))]
# print(cartesian_list)
matrix = np.asarray(list(cartesian_product(cartesian_list)))
peaks = np.sum(np.asarray(list(cartesian_product([list(pt[atoms_verbose[i]].keys()) for i in range(len(atoms_verbose))]))), axis=1)
# print(matrix)
# print(peaks)
product_vector = np.asarray(np.prod(matrix, axis=1))
# print(product_vector)
set_peaks = np.sort(np.asarray(list(set(peaks))))
# print(set_peaks)
intensity_peaks = []
for i in range(len(set_peaks)):
a = 0
for n in range(len(peaks)):
if set_peaks[i] == peaks[n]:
a += product_vector[n]
intensity_peaks.append(a)
intensity_peaks = np.asarray(intensity_peaks)
intensity_peaks *= 100/np.max(intensity_peaks)
intensity_peaks = list(intensity_peaks)
set_peaks = list(set_peaks)
# print(intensity_peaks)
if not nanopeaks:
old_int_peaks = intensity_peaks[:]
old_set_peaks = set_peaks[:]
for p in range(len(old_int_peaks)):
if old_int_peaks[p] < 0.05:
intensity_peaks.remove(old_int_peaks[p])
set_peaks.remove(old_set_peaks[p])
t3 = time.time()
print(f'\n-> Whole program took {round(t3 - t0, 2)} s')
print('------------------------------------------\n')
print('-> Peaks List:\n\nm/z Rel. Ab.\n***************')
for i in range(len(set_peaks)):
if intensity_peaks[i] > 0.05:
print('%-6s %-5s' % (set_peaks[i], round(intensity_peaks[i], 2)))
if plot:
fig = plt.figure()
plot = plt.vlines(set_peaks, [0 for _ in range(len(set_peaks))], intensity_peaks)
plt.xlabel('m/z')
plt.ylabel('% Abundance')
plt.title(formula)
plt.xlim(min(set_peaks) - 1, max(set_peaks) + 1)
plt.show()