forked from teamclairvoyant/airflow-maintenance-dags
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathairflow-db-cleanup.py
499 lines (426 loc) · 15.8 KB
/
airflow-db-cleanup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
"""
A maintenance workflow that you can deploy into Airflow to periodically clean
out the DagRun, TaskInstance, Log, XCom, Job DB and SlaMiss entries to avoid
having too much data in your Airflow MetaStore.
## Authors
The DAG is a fork of [teamclairvoyant repository.](https://github.com/teamclairvoyant/airflow-maintenance-dags/tree/master/db-cleanup)
## Usage
1. Update the global variables (SCHEDULE_INTERVAL, DAG_OWNER_NAME,
ALERT_EMAIL_ADDRESSES and ENABLE_DELETE) in the DAG with the desired values
2. Modify the DATABASE_OBJECTS list to add/remove objects as needed. Each
dictionary in the list features the following parameters:
- airflow_db_model: Model imported from airflow.models corresponding to
a table in the airflow metadata database
- age_check_column: Column in the model/table to use for calculating max
date of data deletion
- keep_last: Boolean to specify whether to preserve last run instance
- keep_last_filters: List of filters to preserve data from deleting
during clean-up, such as DAG runs where the external trigger is set to 0.
- keep_last_group_by: Option to specify column by which to group the
database entries and perform aggregate functions.
3. Create and Set the following Variables in the Airflow Web Server
(Admin -> Variables)
- airflow_db_cleanup__max_db_entry_age_in_days - integer - Length to retain
the log files if not already provided in the conf. If this is set to 30,
the job will remove those files that are 30 days old or older.
4. Put the DAG in your gcs bucket.
"""
from datetime import timedelta
import logging
import os
import airflow
from airflow import settings
from airflow.models import (
DAG,
DagModel,
DagRun,
Log,
SlaMiss,
TaskInstance,
Variable,
XCom,
)
from airflow.operators.python import PythonOperator
from airflow.utils import timezone
from airflow.version import version as airflow_version
import dateutil.parser
from sqlalchemy import and_, func, text
from sqlalchemy.exc import ProgrammingError
from sqlalchemy.orm import load_only
now = timezone.utcnow
# airflow-db-cleanup
DAG_ID = os.path.basename(__file__).replace(".pyc", "").replace(".py", "")
START_DATE = airflow.utils.dates.days_ago(1)
# How often to Run. @daily - Once a day at Midnight (UTC)
SCHEDULE_INTERVAL = "@daily"
# Who is listed as the owner of this DAG in the Airflow Web Server
DAG_OWNER_NAME = "operations"
# List of email address to send email alerts to if this job fails
ALERT_EMAIL_ADDRESSES = []
# Airflow version used by the environment in list form, value stored in
# airflow_version is in format e.g "2.3.4+composer"
AIRFLOW_VERSION = airflow_version[: -len("+composer")].split(".")
# Length to retain the log files if not already provided in the conf. If this
# is set to 30, the job will remove those files that arE 30 days old or older.
DEFAULT_MAX_DB_ENTRY_AGE_IN_DAYS = int(
Variable.get("airflow_db_cleanup__max_db_entry_age_in_days", 30)
)
# Prints the database entries which will be getting deleted; set to False
# to avoid printing large lists and slowdown process
PRINT_DELETES = False
# Whether the job should delete the db entries or not. Included if you want to
# temporarily avoid deleting the db entries.
ENABLE_DELETE = True
# List of all the objects that will be deleted. Comment out the DB objects you
# want to skip.
DATABASE_OBJECTS = [
{
"airflow_db_model": DagRun,
"age_check_column": DagRun.execution_date,
"keep_last": True,
"keep_last_filters": [DagRun.external_trigger.is_(False)],
"keep_last_group_by": DagRun.dag_id,
},
# {
# "airflow_db_model": TaskInstance,
# "age_check_column": TaskInstance.start_date
# if AIRFLOW_VERSION < ["2", "2", "0"]
# else TaskInstance.start_date,
# "keep_last": False,
# "keep_last_filters": None,
# "keep_last_group_by": None,
# },
{
"airflow_db_model": Log,
"age_check_column": Log.dttm,
"keep_last": False,
"keep_last_filters": None,
"keep_last_group_by": None,
},
# {
# "airflow_db_model": XCom,
# "age_check_column": XCom.execution_date
# if AIRFLOW_VERSION < ["2", "2", "5"]
# else XCom.timestamp,
# "keep_last": False,
# "keep_last_filters": None,
# "keep_last_group_by": None,
# },
{
"airflow_db_model": SlaMiss,
"age_check_column": SlaMiss.execution_date,
"keep_last": False,
"keep_last_filters": None,
"keep_last_group_by": None,
},
{
"airflow_db_model": DagModel,
"age_check_column": DagModel.last_parsed_time,
"keep_last": False,
"keep_last_filters": None,
"keep_last_group_by": None,
},
]
# Check for TaskReschedule model
# try:
# from airflow.models import TaskReschedule
# DATABASE_OBJECTS.append(
# {
# "airflow_db_model": TaskReschedule,
# "age_check_column": TaskReschedule.execution_date
# if AIRFLOW_VERSION < ["2", "2", "0"]
# else TaskReschedule.start_date,
# "keep_last": False,
# "keep_last_filters": None,
# "keep_last_group_by": None,
# }
# )
# except Exception as e:
# logging.error(e)
# Check for TaskFail model
try:
from airflow.models import TaskFail
DATABASE_OBJECTS.append(
{
"airflow_db_model": TaskFail,
"age_check_column": TaskFail.start_date,
"keep_last": False,
"keep_last_filters": None,
"keep_last_group_by": None,
}
)
except Exception as e:
logging.error(e)
# Check for RenderedTaskInstanceFields model
# if AIRFLOW_VERSION < ["2", "4", "0"]:
# try:
# from airflow.models import RenderedTaskInstanceFields
# DATABASE_OBJECTS.append(
# {
# "airflow_db_model": RenderedTaskInstanceFields,
# "age_check_column": RenderedTaskInstanceFields.execution_date,
# "keep_last": False,
# "keep_last_filters": None,
# "keep_last_group_by": None,
# }
# )
# except Exception as e:
# logging.error(e)
# Check for ImportError model
try:
from airflow.models import ImportError
DATABASE_OBJECTS.append(
{
"airflow_db_model": ImportError,
"age_check_column": ImportError.timestamp,
"keep_last": False,
"keep_last_filters": None,
"keep_last_group_by": None,
"do_not_delete_by_dag_id": True,
}
)
except Exception as e:
logging.error(e)
if AIRFLOW_VERSION < ["2", "6", "0"]:
try:
from airflow.jobs.base_job import BaseJob
DATABASE_OBJECTS.append(
{
"airflow_db_model": BaseJob,
"age_check_column": BaseJob.latest_heartbeat,
"keep_last": False,
"keep_last_filters": None,
"keep_last_group_by": None,
}
)
except Exception as e:
logging.error(e)
else:
try:
from airflow.jobs.job import Job
DATABASE_OBJECTS.append(
{
"airflow_db_model": Job,
"age_check_column": Job.latest_heartbeat,
"keep_last": False,
"keep_last_filters": None,
"keep_last_group_by": None,
}
)
except Exception as e:
logging.error(e)
default_args = {
"owner": DAG_OWNER_NAME,
"depends_on_past": False,
"email": ALERT_EMAIL_ADDRESSES,
"email_on_failure": True,
"email_on_retry": False,
"start_date": START_DATE,
"retries": 1,
"retry_delay": timedelta(minutes=1),
}
dag = DAG(
DAG_ID,
default_args=default_args,
schedule_interval=SCHEDULE_INTERVAL,
start_date=START_DATE,
)
if hasattr(dag, "doc_md"):
dag.doc_md = __doc__
if hasattr(dag, "catchup"):
dag.catchup = False
def print_configuration_function(**context):
logging.info("Loading Configurations...")
dag_run_conf = context.get("dag_run").conf
logging.info("dag_run.conf: " + str(dag_run_conf))
max_db_entry_age_in_days = None
if dag_run_conf:
max_db_entry_age_in_days = dag_run_conf.get("maxDBEntryAgeInDays", None)
logging.info("maxDBEntryAgeInDays from dag_run.conf: " + str(dag_run_conf))
if max_db_entry_age_in_days is None or max_db_entry_age_in_days < 1:
logging.info(
"maxDBEntryAgeInDays conf variable isn't included or Variable "
+ "value is less than 1. Using Default '"
+ str(DEFAULT_MAX_DB_ENTRY_AGE_IN_DAYS)
+ "'"
)
max_db_entry_age_in_days = DEFAULT_MAX_DB_ENTRY_AGE_IN_DAYS
max_date = now() + timedelta(-max_db_entry_age_in_days)
logging.info("Finished Loading Configurations")
logging.info("")
logging.info("Configurations:")
logging.info("max_db_entry_age_in_days: " + str(max_db_entry_age_in_days))
logging.info("max_date: " + str(max_date))
logging.info("enable_delete: " + str(ENABLE_DELETE))
logging.info("")
logging.info("Setting max_execution_date to XCom for Downstream Processes")
context["ti"].xcom_push(key="max_date", value=max_date.isoformat())
print_configuration = PythonOperator(
task_id="print_configuration",
python_callable=print_configuration_function,
provide_context=True,
dag=dag,
)
def build_query(
session,
airflow_db_model,
age_check_column,
max_date,
keep_last,
keep_last_filters=None,
keep_last_group_by=None,
):
query = session.query(airflow_db_model).options(load_only(age_check_column))
logging.info("INITIAL QUERY : " + str(query))
if not keep_last:
query = query.filter(
age_check_column <= max_date,
)
else:
subquery = session.query(func.max(DagRun.execution_date))
# workaround for MySQL "table specified twice" issue
# https://github.com/teamclairvoyant/airflow-maintenance-dags/issues/41
if keep_last_filters is not None:
for entry in keep_last_filters:
subquery = subquery.filter(entry)
logging.info("SUB QUERY [keep_last_filters]: " + str(subquery))
if keep_last_group_by is not None:
subquery = subquery.group_by(keep_last_group_by)
logging.info("SUB QUERY [keep_last_group_by]: " + str(subquery))
subquery = subquery.from_self()
query = query.filter(
and_(age_check_column.notin_(subquery)), and_(age_check_column <= max_date)
)
return query
def print_query(query, airflow_db_model, age_check_column):
entries_to_delete = query.all()
logging.info("Query: " + str(query))
logging.info(
"Process will be Deleting the following "
+ str(airflow_db_model.__name__)
+ "(s):"
)
for entry in entries_to_delete:
date = str(entry.__dict__[str(age_check_column).split(".")[1]])
logging.info("\tEntry: " + str(entry) + ", Date: " + date)
logging.info(
"Process will be Deleting "
+ str(len(entries_to_delete))
+ " "
+ str(airflow_db_model.__name__)
+ "(s)"
)
def cleanup_function(**context):
session = settings.Session()
logging.info("Retrieving max_execution_date from XCom")
max_date = context["ti"].xcom_pull(
task_ids=print_configuration.task_id, key="max_date"
)
max_date = dateutil.parser.parse(max_date) # stored as iso8601 str in xcom
airflow_db_model = context["params"].get("airflow_db_model")
state = context["params"].get("state")
age_check_column = context["params"].get("age_check_column")
keep_last = context["params"].get("keep_last")
keep_last_filters = context["params"].get("keep_last_filters")
keep_last_group_by = context["params"].get("keep_last_group_by")
logging.info("Configurations:")
logging.info("max_date: " + str(max_date))
logging.info("enable_delete: " + str(ENABLE_DELETE))
logging.info("session: " + str(session))
logging.info("airflow_db_model: " + str(airflow_db_model))
logging.info("state: " + str(state))
logging.info("age_check_column: " + str(age_check_column))
logging.info("keep_last: " + str(keep_last))
logging.info("keep_last_filters: " + str(keep_last_filters))
logging.info("keep_last_group_by: " + str(keep_last_group_by))
logging.info("")
logging.info("Running Cleanup Process...")
try:
if context["params"].get("do_not_delete_by_dag_id"):
query = build_query(
session,
airflow_db_model,
age_check_column,
max_date,
keep_last,
keep_last_filters,
keep_last_group_by,
)
if PRINT_DELETES:
print_query(query, airflow_db_model, age_check_column)
if ENABLE_DELETE:
logging.info("Performing Delete...")
query.delete(synchronize_session=False)
session.commit()
else:
dags = session.query(airflow_db_model.dag_id).distinct()
session.commit()
list_dags = [str(list(dag)[0]) for dag in dags] + [None]
for dag in list_dags:
query = build_query(
session,
airflow_db_model,
age_check_column,
max_date,
keep_last,
keep_last_filters,
keep_last_group_by,
)
query = query.filter(airflow_db_model.dag_id == dag)
if PRINT_DELETES:
print_query(query, airflow_db_model, age_check_column)
if ENABLE_DELETE:
logging.info("Performing Delete...")
query.delete(synchronize_session=False)
session.commit()
if not ENABLE_DELETE:
logging.warn(
"You've opted to skip deleting the db entries. "
"Set ENABLE_DELETE to True to delete entries!!!"
)
logging.info("Finished Running Cleanup Process")
except ProgrammingError as e:
logging.error(e)
logging.error(
str(airflow_db_model) + " is not present in the metadata. " "Skipping..."
)
finally:
session.close()
def cleanup_sessions():
session = settings.Session()
try:
logging.info("Deleting sessions...")
count_statement = "SELECT COUNT(*) AS cnt FROM session WHERE expiry < now()::timestamp(0);"
before = session.execute(text(count_statement)).one_or_none()["cnt"]
session.execute(text("DELETE FROM session WHERE expiry < now()::timestamp(0);"))
after = session.execute(text(count_statement)).one_or_none()["cnt"]
logging.info("Deleted %s expired sessions.", (before - after))
except Exception as err:
logging.exception(err)
session.commit()
session.close()
def analyze_db():
session = settings.Session()
session.execute("ANALYZE")
session.commit()
session.close()
analyze_op = PythonOperator(
task_id="analyze_query", python_callable=analyze_db, provide_context=True, dag=dag
)
cleanup_session_op = PythonOperator(
task_id="cleanup_sessions",
python_callable=cleanup_sessions,
provide_context=True,
dag=dag,
)
cleanup_session_op.set_downstream(analyze_op)
for db_object in DATABASE_OBJECTS:
cleanup_op = PythonOperator(
task_id="cleanup_" + str(db_object["airflow_db_model"].__name__),
python_callable=cleanup_function,
params=db_object,
provide_context=True,
dag=dag,
)
print_configuration.set_downstream(cleanup_op)
cleanup_op.set_downstream(analyze_op)