- Python3
- PyTorch (> 1.0)
- NumPy
- tqdm
-
Download four public benchmarks for fine-grained dataset
-
Extract the tgz or zip file into
./data/
(Exceptionally, for CUB-200-2011, put the files in a./data/CUB200
)
python train.py \
--model resnet18 \
--dataset mit \
--alpha 32 \
--mrg 0.1 \
--lr 1e-4 \
--warm 5 \
--epochs 60 \
--batch-size 120 \
This repository is heavily built based on the following repository:
This project is licensed under the MIT License - see the LICENSE file for details.