-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_cifar100.py
66 lines (62 loc) · 2.79 KB
/
main_cifar100.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import sys
sys.path.append('./trainer')
import argparse
import nutszebra_cifar100
import shake_shake
import nutszebra_data_augmentation
import nutszebra_optimizer
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='cifar10')
parser.add_argument('--load_model', '-m',
default=None,
help='trained model')
parser.add_argument('--load_optimizer', '-o',
default=None,
help='optimizer for trained model')
parser.add_argument('--load_log', '-l',
default=None,
help='optimizer for trained model')
parser.add_argument('--save_path', '-p',
default='./',
help='model and optimizer will be saved every epoch')
parser.add_argument('--epoch', '-e', type=int,
default=1800,
help='maximum epoch')
parser.add_argument('--batch', '-b', type=int,
default=128,
help='mini batch number')
parser.add_argument('--gpu', '-g', type=int,
default=-1,
help='-1 means cpu mode, put gpu id here')
parser.add_argument('--start_epoch', '-s', type=int,
default=1,
help='start from this epoch')
parser.add_argument('--train_batch_divide', '-trb', type=int,
default=1,
help='divid batch number by this')
parser.add_argument('--test_batch_divide', '-teb', type=int,
default=1,
help='divid batch number by this')
parser.add_argument('--eta_max', '-ema', type=float,
default=0.2,
help='eta max for cosine annealing')
parser.add_argument('--eta_min', '-emi', type=float,
default=0.002,
help='eta min for cosine annealing')
parser.add_argument('--dim', '-dim', type=int,
default=64,
help='width')
args = parser.parse_args().__dict__
eta_max = args.pop('eta_max')
eta_min = args.pop('eta_min')
dim = args.pop('dim')
print('generating model')
model = shake_shake.ShakeShake(100, (dim, dim * 2, dim * 4), (4, 4, 4))
print('Done')
print('parameters: {}'.format(model.count_parameters()))
optimizer = nutszebra_optimizer.OptimizerCosineAnnealing(model, eta_max=eta_max, eta_min=eta_min, total_epoch=args['epoch'], start_epoch=args['start_epoch'])
args['model'] = model
args['optimizer'] = optimizer
args['da'] = nutszebra_data_augmentation.DataAugmentationCifar10NormalizeSmall
main = nutszebra_cifar100.TrainCifar100(**args)
main.run()