-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_net.py
82 lines (68 loc) · 2.44 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import os
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.data import MetadataCatalog
from detectron2.config import get_cfg
from detectron2.engine import default_argument_parser, default_setup, launch
from detectron2.evaluation import COCOEvaluator
from detectron2.evaluation.testing import verify_results
from detectron2.utils import comm
from evaluation import TextEvaluator
from configs import add_centernet_config,add_textnet_config,add_basic_config
from apis import Trainer
import warnings
warnings.filterwarnings("ignore")
class Trainer(Trainer):
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
if evaluator_type=="text":
return TextEvaluator(dataset_name,cfg,True,output_folder)
return COCOEvaluator(dataset_name, cfg, True, output_folder)
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
if "toydet" in args.config_file:
add_textnet_config(cfg)
elif "layout" in args.config_file:
add_centernet_config(cfg)
else:
add_basic_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
if comm.is_main_process():
verify_results(cfg, res)
return res
"""
If you'd like to do anything fancier than the standard training logic,
consider writing your own training loop or subclassing the trainer.
"""
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)