-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
180 lines (153 loc) · 6.64 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
'''Train CIFAR10 with PyTorch.'''
from __future__ import print_function
import sys
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import config as cf
import torchvision
import torchvision.transforms as transforms
import os
import argparse
from models import *
from utils import progress_bar
import numpy as np
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--batch_size', default=256, type=int, help='batch size')
parser.add_argument('--dataset', default='cifar10', type=str, help='dataset = [cifar10, cifar100, fashion-mnist]')
parser.add_argument('--model', default='lrunet', type=str, help='model = [lrunet, shufflenet, shufflenetv2, mobilenet, mobilenetv2]')
parser.add_argument('--layer_reuse', default=8, type=int, help='layer reuse')
parser.add_argument('--width_mult', default=1.0, type=float, help='width multiplier')
parser.add_argument('--drop', default=0.5, type=float, help='applied dropout')
parser.add_argument('--groups', default=3, type=int, help='The number of groups at group convolution at ShuffleNet')
parser.add_argument('--resume_path', default='', type=str, help='Save data (.pth) of previous training')
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomRotation(degrees=10),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
# transforms.Normalize(cf.mean[args.dataset], cf.std[args.dataset]),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
# transforms.Normalize(cf.mean[args.dataset], cf.std[args.dataset]),
])
if(args.dataset == 'cifar10'):
print("| Preparing CIFAR-10 dataset...")
sys.stdout.write("| ")
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform_test)
num_classes = 10
init_ch = 3 # Number of channels for the first conv layer
elif(args.dataset == 'cifar100'):
print("| Preparing CIFAR-100 dataset...")
sys.stdout.write("| ")
trainset = torchvision.datasets.CIFAR100(root='./data', train=True, download=True, transform=transform_train)
testset = torchvision.datasets.CIFAR100(root='./data', train=False, download=False, transform=transform_test)
num_classes = 100
init_ch = 3 # Number of channels for the first conv layer
elif(args.dataset == 'fashionmnist'):
print("| Preparing FashionMNIST dataset...")
sys.stdout.write("| ")
trainset = torchvision.datasets.FashionMNIST(root='./data', train=True, download=True, transform=transform_train)
testset = torchvision.datasets.FashionMNIST(root='./data', train=False, download=True, transform=transform_test)
num_classes = 10
init_ch = 1 # Number of channels for the first conv layer
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
# Model
print('==> Building model..')
if args.model == 'lrunet':
net = LruNet(num_classes, args.width_mult, args.layer_reuse, args.drop, init_ch)
elif args.model == 'mobilenet':
net = MobileNet(num_classes, args.width_mult, init_ch)
elif args.model == 'mobilenetv2':
net = MobileNetV2(num_classes, args.width_mult, init_ch)
elif args.model == 'shufflenet':
net = ShuffleNet(num_classes, args.width_mult, args.groups, init_ch)
elif args.model == 'shufflenetv2':
net = ShuffleNetV2(num_classes, args.width_mult, init_ch)
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
print(net)
conv_params = 0
for key in net.modules():
if (isinstance(key, nn.Conv2d) | isinstance(key, nn.Linear)):
#print(key)
conv_params += sum(p.numel() for p in key.parameters() if p.requires_grad)
print("Total number of convolution parameters: ", conv_params)
pytorch_total_params = sum(p.numel() for p in net.parameters() if p.requires_grad)
print("Total number of trainable parameters: ", pytorch_total_params)
if args.resume_path:
# Load checkpoint.
print('==> Resuming from checkpoint..')
checkpoint = torch.load(args.resume_path)
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
# Training
def train(epoch):
print('Epoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
if acc > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/ckpt.t7')
best_acc = acc
for epoch in range(start_epoch, start_epoch+275):
train(epoch)
test(epoch)