-
Notifications
You must be signed in to change notification settings - Fork 722
/
Copy pathconstexpr_math.hpp
186 lines (161 loc) · 4.3 KB
/
constexpr_math.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#ifndef __CONSTEXPR_MATH__
#define __CONSTEXPR_MATH__
//
// This file contains various helper C++ metaprogramming math functions that
// are useful across various designs.
//
#include <limits>
namespace fpga_tools {
// returns the absolute value of 'x'
template <typename T>
constexpr T Abs(T x) { return (x < 0) ? -x : x; }
// returns the minimum of 'a' and 'b'.
// The type, 'T', must have an operator<
template <typename T>
constexpr T Min(T a, T b) { return (a < b) ? a : b; }
// returns the maximum of 'a' and 'b'.
// The type, 'T', must have an operator>
template <typename T>
constexpr T Max(T a, T b) { return (a > b) ? a : b; }
// rounds up to the nearest multiple of of 'multiple'
// only works for positive numbers
template <typename T>
constexpr T RoundUpToMultiple(T num, T multiple) {
static_assert(std::is_integral_v<T>);
static_assert(std::is_unsigned_v<T>);
if (multiple == 0) {
return num;
}
int remainder = num % multiple;
if (remainder == 0) {
return num;
} else {
return num + multiple - remainder;
}
}
// returns n^2
template <typename T>
constexpr T Pow2(T n) {
static_assert(std::is_integral_v<T>);
return (n < 0) ? (T(1) << (-n)) : (T(1) << n);
}
// returns whether abs(n) is a power of 2
template <typename T>
constexpr bool IsPow2(T n) {
static_assert(std::is_integral_v<T>);
if (n < 0) n = -n;
return (n != 0) && ((n & (n - 1)) == 0);
}
// returns log2(n) rounding down
template <typename T>
constexpr T Log2(T n) {
static_assert(std::is_integral_v<T>);
if (n < 2) {
return T(0);
} else {
T ret = 0;
while (n >= 2) {
ret++;
n /= 2;
}
return ret;
}
}
// returns log(2) rounded up
template <typename T>
static constexpr T CeilLog2(T n) {
return ((n == 1) ? T(0) : Log2(n - 1) + T(1));
}
// returns the number of bits required to encode all the values between 0 and N
template <unsigned int n>
static constexpr unsigned int BitsForMaxValue() {
return CeilLog2(n + 1);
}
// return 'n' rounded up to the nearest power of 2
template <typename T>
constexpr T RoundUpPow2(T n) {
static_assert(std::is_integral_v<T>);
static_assert(std::is_unsigned_v<T>);
if (n == 0) {
return 2;
} else if (IsPow2(n)) {
return n;
} else {
return T(1) << (Log2(n) + 1);
}
}
// computes x^y where y must be an integer (positive or negative)
constexpr double Pow(double x, int y) {
if (y == 0) {
// x^0 = 1
return 1.0;
} else {
// handle both y < 0 and y > 0 by changing loop bound and multiply value
bool y_is_negative = (y < 0);
double mult_val = y_is_negative ? (1/x) : x;
int loop_bound = y_is_negative ? -y : y;
double ret = 1.0;
for (int i = 0; i < loop_bound; i++) {
ret *= mult_val;
}
return ret;
}
}
// estimates e^(x) for x >= 0 using a taylor series expansion
// https://en.wikipedia.org/wiki/Taylor_series
constexpr double Exp(double x, unsigned taylor_terms=32) {
double factorial = 1.0;
double power = 1.0;
double answer = 1.0;
for(int i = 1; i < taylor_terms-1; i++) {
power *= x;
factorial *= i;
answer += power / factorial;
}
return answer;
}
// Scale significand using floating-point base exponent
// see: http://www.cplusplus.com/reference/cmath/scalbn/
constexpr float Scalbn(float value, int exponent) {
if (exponent == 0) {
return value;
} else {
float ret = value;
while(exponent != 0) {
if (exponent > 0) {
ret *= 2;
exponent--;
} else {
ret /= 2;
exponent++;
}
}
return ret;
}
}
// extract the exponent from a 32-bit float
constexpr int FP32ExtractExponent(float x) {
if (x == 0) {
return 0;
} else {
float ret = 0;
float abs_x = Abs(x);
while (abs_x >= 2 || abs_x < 1) {
bool abs_x_gte_2 = (abs_x >= 2);
ret += (abs_x_gte_2 ? 1 : -1);
x = (abs_x_gte_2 ? (x/2) : (x*2));
abs_x = Abs(x);
}
return ret;
}
}
// extract the mantissa from a 32-bit float
constexpr int FP32ExtractMantissa(float x) {
// remove hidden 1 and bias the exponent to get integer
//#pragma clang fp contract(off)
//return (Abs(x) < std::numeric_limits<float>::infinity()) ?
// Scalbn(Scalbn(Abs(x),-FP32ExtractExponent(x))-1,23) : 0;
return Scalbn(Scalbn(Abs(x),-FP32ExtractExponent(x))-1,23);
}
} // namespace fpga_tools
#endif /* __CONSTEXPR_MATH__ */