-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathlbr_gru.cpp
201 lines (173 loc) · 8.11 KB
/
lbr_gru.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/*******************************************************************************
* Copyright 2024 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
/// @example lbr_gru.cpp
/// > Annotated version: @ref lbr_gru_example_cpp
///
/// @page lbr_gru_example_cpp_short
///
/// This C++ API example demonstrates how to create and execute a
/// [Linear-Before-Reset GRU RNN](@ref dev_guide_rnn) primitive in forward
/// training propagation mode.
///
/// Key optimizations included in this example:
/// - Creation of optimized memory format from the primitive descriptor.
///
/// @page lbr_gru_example_cpp Linear-Before-Reset GRU RNN Primitive Example
/// @copydetails lbr_gru_example_cpp_short
///
/// @include lbr_gru.cpp
#include <algorithm>
#include <cmath>
#include <iostream>
#include <string>
#include <vector>
#include "dnnl.hpp"
#include "example_utils.hpp"
using namespace dnnl;
using tag = memory::format_tag;
using dt = memory::data_type;
void lbr_gru_example(dnnl::engine::kind engine_kind) {
// Create execution dnnl::engine.
dnnl::engine engine(engine_kind, 0);
// Create dnnl::stream.
dnnl::stream engine_stream(engine);
// Tensor dimensions.
const memory::dim N = 2, // batch size
T = 3, // time steps
IC = 2, // src channels
OC = 3, // dst channels
G = 3, // gates
L = 1, // layers
D = 1, // directions
E = 1; // extra Bias number. Extra Bias for u' gate
// Source (src), weights, bias, attention, and destination (dst) tensors
// dimensions.
memory::dims src_dims = {T, N, IC};
memory::dims weights_layer_dims = {L, D, IC, G, OC};
memory::dims weights_iter_dims = {L, D, OC, G, OC};
memory::dims bias_dims = {L, D, G + E, OC};
memory::dims dst_layer_dims = {T, N, OC};
memory::dims dst_iter_dims = {L, D, N, OC};
// Allocate buffers.
std::vector<float> src_layer_data(product(src_dims));
std::vector<float> weights_layer_data(product(weights_layer_dims));
std::vector<float> weights_iter_data(product(weights_iter_dims));
std::vector<float> bias_data(product(bias_dims));
std::vector<float> dst_layer_data(product(dst_layer_dims));
std::vector<float> dst_iter_data(product(dst_iter_dims));
// Initialize src, weights, and bias tensors.
std::generate(src_layer_data.begin(), src_layer_data.end(), []() {
static int i = 0;
return std::cos(i++ / 10.f);
});
std::generate(weights_layer_data.begin(), weights_layer_data.end(), []() {
static int i = 0;
return std::sin(i++ * 2.f);
});
std::generate(weights_iter_data.begin(), weights_iter_data.end(), []() {
static int i = 0;
return std::sin(i++ * 2.f);
});
std::generate(bias_data.begin(), bias_data.end(), []() {
static int i = 0;
return std::tanh(float(i++));
});
// Create memory descriptors and memory objects for src, bias, and dst.
auto src_layer_md = memory::desc(src_dims, dt::f32, tag::tnc);
auto bias_md = memory::desc(bias_dims, dt::f32, tag::ldgo);
auto dst_layer_md = memory::desc(dst_layer_dims, dt::f32, tag::tnc);
auto src_layer_mem = memory(src_layer_md, engine);
auto bias_mem = memory(bias_md, engine);
auto dst_layer_mem = memory(dst_layer_md, engine);
// Create memory objects for weights using user's memory layout. In this
// example, LDIGO (num_layers, num_directions, input_channels, num_gates,
// output_channels) is assumed.
auto user_weights_layer_mem
= memory({weights_layer_dims, dt::f32, tag::ldigo}, engine);
auto user_weights_iter_mem
= memory({weights_iter_dims, dt::f32, tag::ldigo}, engine);
// Write data to memory object's handle.
// For GRU cells, the gates order is update, reset and output
// gate except the bias. For the bias tensor, the gates order is
// u, r, o and u' gate.
write_to_dnnl_memory(src_layer_data.data(), src_layer_mem);
write_to_dnnl_memory(bias_data.data(), bias_mem);
write_to_dnnl_memory(weights_layer_data.data(), user_weights_layer_mem);
write_to_dnnl_memory(weights_iter_data.data(), user_weights_iter_mem);
// Create memory descriptors for weights with format_tag::any. This enables
// the lbr_gru primitive to choose the optimized memory layout.
auto weights_layer_md = memory::desc(weights_layer_dims, dt::f32, tag::any);
auto weights_iter_md = memory::desc(weights_iter_dims, dt::f32, tag::any);
// Optional memory descriptors for recurrent data.
// Default memory descriptor for initial hidden states of the GRU cells
auto src_iter_md = memory::desc();
auto dst_iter_md = memory::desc();
// Create primitive descriptor.
auto lbr_gru_pd = lbr_gru_forward::primitive_desc(engine,
prop_kind::forward_training,
rnn_direction::unidirectional_left2right, src_layer_md, src_iter_md,
weights_layer_md, weights_iter_md, bias_md, dst_layer_md,
dst_iter_md);
// For now, assume that the weights memory layout generated by the primitive
// and the ones provided by the user are identical.
auto weights_layer_mem = user_weights_layer_mem;
auto weights_iter_mem = user_weights_iter_mem;
// Reorder the data in case the weights memory layout generated by the
// primitive and the one provided by the user are different. In this case,
// we create additional memory objects with internal buffers that will
// contain the reordered data.
if (lbr_gru_pd.weights_desc() != user_weights_layer_mem.get_desc()) {
weights_layer_mem = memory(lbr_gru_pd.weights_desc(), engine);
reorder(user_weights_layer_mem, weights_layer_mem)
.execute(engine_stream, user_weights_layer_mem,
weights_layer_mem);
}
if (lbr_gru_pd.weights_iter_desc() != user_weights_iter_mem.get_desc()) {
weights_iter_mem = memory(lbr_gru_pd.weights_iter_desc(), engine);
reorder(user_weights_iter_mem, weights_iter_mem)
.execute(
engine_stream, user_weights_iter_mem, weights_iter_mem);
}
// Create the memory objects from the primitive descriptor. A workspace is
// also required for Linear-Before-Reset GRU RNN.
// NOTE: Here, the workspace is required for later usage in backward
// propagation mode.
auto src_iter_mem = memory(lbr_gru_pd.src_iter_desc(), engine);
auto dst_iter_mem = memory(lbr_gru_pd.dst_iter_desc(), engine);
auto workspace_mem = memory(lbr_gru_pd.workspace_desc(), engine);
// Create the primitive.
auto lbr_gru_prim = lbr_gru_forward(lbr_gru_pd);
// Primitive arguments
std::unordered_map<int, memory> lbr_gru_args;
lbr_gru_args.insert({DNNL_ARG_SRC_LAYER, src_layer_mem});
lbr_gru_args.insert({DNNL_ARG_WEIGHTS_LAYER, weights_layer_mem});
lbr_gru_args.insert({DNNL_ARG_WEIGHTS_ITER, weights_iter_mem});
lbr_gru_args.insert({DNNL_ARG_BIAS, bias_mem});
lbr_gru_args.insert({DNNL_ARG_DST_LAYER, dst_layer_mem});
lbr_gru_args.insert({DNNL_ARG_SRC_ITER, src_iter_mem});
lbr_gru_args.insert({DNNL_ARG_DST_ITER, dst_iter_mem});
lbr_gru_args.insert({DNNL_ARG_WORKSPACE, workspace_mem});
// Primitive execution: lbr_gru.
lbr_gru_prim.execute(engine_stream, lbr_gru_args);
// Wait for the computation to finalize.
engine_stream.wait();
// Read data from memory object's handle.
read_from_dnnl_memory(dst_layer_data.data(), dst_layer_mem);
}
int main(int argc, char **argv) {
return handle_example_errors(
lbr_gru_example, parse_engine_kind(argc, argv));
}