forked from xiaolai-sqlai/mobilenetv3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
360 lines (309 loc) · 16.7 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os, lmdb, pickle, six
from PIL import Image
import torch
from torchvision import datasets, transforms
from timm.data.constants import \
IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from timm.data import create_transform
import pandas as pd
import numpy as np
from torch.autograd import Variable
from torch.utils.data import TensorDataset, random_split
class ImageFolderLMDB(torch.utils.data.Dataset):
def __init__(self, db_path, transform=None):
self.db_path = db_path
self.env = lmdb.open(db_path, subdir=False, readonly=True, lock=False, readahead=False, meminit=False)
with self.env.begin(write=False) as txn:
self.length = pickle.loads(txn.get(b'__len__'))
self.keys = pickle.loads(txn.get(b'__keys__'))
self.transform = transform
def __getitem__(self, idx):
env = self.env
with env.begin(write=False) as txn:
byteflow = txn.get(self.keys[idx])
unpacked = pickle.loads(byteflow)
# load image
imgbuf = unpacked[0]
buf = six.BytesIO()
buf.write(imgbuf)
buf.seek(0)
img = Image.open(buf).convert('RGB')
# load label
label = unpacked[1]
if self.transform is not None:
img = self.transform(img)
return img, label
def __len__(self):
return self.length
def build_dataset(is_train, args):
transform = build_transform(is_train, args)
print("Transform = ")
if isinstance(transform, tuple):
for trans in transform:
print(" - - - - - - - - - - ")
for t in trans.transforms:
print(t)
else:
for t in transform.transforms:
print(t)
print("---------------------------")
if args.data_set == 'CIFAR':
dataset = datasets.CIFAR100(args.data_path, train=is_train, transform=transform, download=True)
nb_classes = 100
elif args.data_set == 'IMNET':
print("reading from datapath", args.data_path)
root = os.path.join(args.data_path, 'train' if is_train else 'val')
dataset = datasets.ImageFolder(root, transform=transform)
nb_classes = 1000
elif args.data_set == 'IMNET_LMDB':
print("reading from datapath", args.data_path)
path = os.path.join(args.data_path, 'train.lmdb' if is_train else 'val.lmdb')
dataset = ImageFolderLMDB(path, transform=transform)
nb_classes = 1000
elif args.data_set == "image_folder":
root = args.data_path if is_train else args.eval_data_path
dataset = datasets.ImageFolder(root, transform=transform)
nb_classes = args.nb_classes
assert len(dataset.class_to_idx) == nb_classes
else:
raise NotImplementedError()
print("Number of the class = %d" % nb_classes)
return dataset, nb_classes
def build_transform(is_train, args):
resize_im = args.input_size > 32
imagenet_default_mean_and_std = args.imagenet_default_mean_and_std
mean = IMAGENET_INCEPTION_MEAN if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN
std = IMAGENET_INCEPTION_STD if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD
if is_train:
# this should always dispatch to transforms_imagenet_train
transform = create_transform(
input_size=args.input_size,
is_training=True,
color_jitter=args.color_jitter,
auto_augment=args.aa,
interpolation=args.train_interpolation,
re_prob=args.reprob,
re_mode=args.remode,
re_count=args.recount,
mean=mean,
std=std,
)
if not resize_im:
transform.transforms[0] = transforms.RandomCrop(
args.input_size, padding=4)
return transform
t = []
if resize_im:
# warping (no cropping) when evaluated at 384 or larger
if args.input_size >= 384:
t.append(
transforms.Resize((args.input_size, args.input_size),
interpolation=transforms.InterpolationMode.BICUBIC),
)
print(f"Warping {args.input_size} size input images...")
else:
if args.crop_pct is None:
args.crop_pct = 224 / 256
size = int(args.input_size / args.crop_pct)
t.append(
# to maintain same ratio w.r.t. 224 images
transforms.Resize(size, interpolation=transforms.InterpolationMode.BICUBIC),
)
t.append(transforms.CenterCrop(args.input_size))
t.append(transforms.ToTensor())
t.append(transforms.Normalize(mean, std))
return transforms.Compose(t)
# 定义旋转矩阵
def rotation_matrix(psi):
Rz = np.array([[np.cos(psi), -np.sin(psi), 0],
[np.sin(psi), np.cos(psi), 0],
[0, 0, 1]])
return Rz
# 修改后的辅助函数,适用于NumPy数组
def extract_data_by_indices(data, indices):
return data[indices]
def change_data_axis(data_in):
column_0 = data_in.iloc[:, 0]
column_1 = data_in.iloc[:, 1]
column_2 = data_in.iloc[:, 2]
column_3 = data_in.iloc[:, 3]
column_4 = data_in.iloc[:, 4]
column_5 = data_in.iloc[:, 5]
data_in_1 = data_in.copy()
data_in_1.iloc[:, 0] = column_2
data_in_1.iloc[:, 1] = column_0
data_in_1.iloc[:, 2] = column_1
data_in_1.iloc[:, 3] = column_5
data_in_1.iloc[:, 4] = column_3
data_in_1.iloc[:, 5] = column_4
data_in_2 = data_in.copy()
data_in_2.iloc[:, 0] = column_1
data_in_2.iloc[:, 1] = column_2
data_in_2.iloc[:, 2] = column_0
data_in_2.iloc[:, 3] = column_4
data_in_2.iloc[:, 4] = column_5
data_in_2.iloc[:, 5] = column_3
return data_in_1,data_in_2
def transform_data(data_in,mean_in,std_in,Data_frequency,Input_dim,ts):
data_in = ((data_in.to_numpy() - mean_in) / std_in)
x= []
for i in range(0, len(data_in) - Data_frequency * ts, Data_frequency):
x_i = data_in[i : i + Data_frequency * (ts+1), :].copy()
x.append(x_i)
x_arr = np.array(x).reshape(-1, 1, Data_frequency * (ts+1), Input_dim)
# x_var = Variable(torch.from_numpy(x_arr).float()).to(device)
return x_arr
def build_Odo_dataset(Data_frequency,Input_dim,device):
ts = 15-1
data_In1 = pd.read_csv('D:\PhDStudy\pythonproject\DGPS\RNN\SensorDataForMaplc0426mate20.txt', sep=' ', header=None)
data_in1 = data_In1.iloc[:, [1,2,3,4,5,6]]
data_in1_2, data_in1_3 = change_data_axis(data_in1)
data_in1_4 = data_in1.copy() * -1
data_in1_5 = data_in1_2.copy() * -1
data_in1_6 = data_in1_3.copy() * -1
data_Out1 = pd.read_csv('D:\PhDStudy\pythonproject\DGPS\RNN\odoLearn0426Atlans.txt', sep=' ', header=None)
data_out1 = data_Out1.iloc[ts:, [1]]
# 假设ψ是已知的,这里用一个示例角度,你需要用实际的角度来替换这里的0
psi = np.radians(30) # 替换为实际的角度值
Rz = rotation_matrix(psi)
# 应用旋转矩阵
# transformed_data = data_in1.apply(lambda row: np.concatenate((Rz.dot(row[:3]), Rz.dot(row[3:6]))), axis=1)
# 如果你想将结果转换回pandas的DataFrame格式
# data_in1_tr = pd.DataFrame(transformed_data.tolist(), columns=['x1', 'y1', 'z1', 'x2', 'y2', 'z2'])
data_In2 = pd.read_csv('D:\PhDStudy\pythonproject\DGPS\RNN\SensorDataForMaplc0427mate20.txt', sep=' ', header=None)
data_in2 = data_In2.iloc[:, [1,2,3,4,5,6]]
data_in2_2, data_in2_3 = change_data_axis(data_in2)
data_in2_4 = data_in2.copy() * -1
data_in2_5 = data_in2_2.copy() * -1
data_in2_6 = data_in2_3.copy() * -1
data_Out2 = pd.read_csv('D:\PhDStudy\pythonproject\DGPS\RNN\odoLearn0427Atlans.txt', sep=' ', header=None)
data_out2 = data_Out2.iloc[:, [1]]
# transformed_data = data_in2.apply(lambda row: np.concatenate((Rz.dot(row[:3]), Rz.dot(row[3:6]))), axis=1)
# data_in2_tr = pd.DataFrame(transformed_data.tolist(), columns=['x1', 'y1', 'z1', 'x2', 'y2', 'z2'])
data_In3 = pd.read_csv('D:\PhDStudy\pythonproject\DGPS\RNN\SensorDataForMaplc0428mate20.txt', sep=' ', header=None)
data_in3 = data_In3.iloc[:, [1,2,3,4,5,6]]
data_in3_2, data_in3_3 = change_data_axis(data_in3)
data_in3_4 = data_in3.copy() * -1
data_in3_5 = data_in3_2.copy() * -1
data_in3_6 = data_in3_3.copy() * -1
data_Out3 = pd.read_csv('D:\PhDStudy\pythonproject\DGPS\RNN\odoLearn0428Atlans.txt', sep=' ', header=None)
data_out3 = data_Out3.iloc[ts:, [1]]
data_In4 = pd.read_csv('D:\PhDStudy\pythonproject\DGPS\RNN\SensorDataForMaplc1229Mate20Mansour1.txt', sep=' ', header=None)
data_in4 = data_In4.iloc[:, [1,2,3,4,5,6]]
data_Out4 = pd.read_csv('D:\PhDStudy\pythonproject\DGPS\RNN\odoLearn1229Atlans1.txt', sep=' ', header=None)
data_out4 = data_Out4.iloc[ts:, [1]]
data_In5 = pd.read_csv('D:\PhDStudy\pythonproject\DGPS\RNN\SensorDataForMaplc1229Mate20Mansour2.txt', sep=' ', header=None)
data_in5 = data_In5.iloc[:, [1,2,3,4,5,6]]
data_in5_2, data_in5_3 = change_data_axis(data_in5)
data_in5_4 = data_in5.copy() * -1
data_in5_5 = data_in5_2.copy() * -1
data_in5_6 = data_in5_3.copy() * -1
data_Out5 = pd.read_csv('D:\PhDStudy\pythonproject\DGPS\RNN\odoLearn1229Atlans2.txt', sep=' ', header=None)
data_out5 = data_Out5.iloc[ts:, [1]]
eval_size_in = int(len(data_in2) * 0.5)
full_data_in = pd.concat([data_in1, data_in1_2, data_in1_3, data_in1_4, data_in1_5, data_in1_6,
data_in2.iloc[0:eval_size_in],data_in2_2.iloc[0:eval_size_in],data_in2_3.iloc[0:eval_size_in],
data_in2_4.iloc[0:eval_size_in],data_in2_5.iloc[0:eval_size_in],data_in2_6.iloc[0:eval_size_in],
data_in3,data_in3_2,data_in3_3,data_in3_4, data_in3_5, data_in3_6,
data_in5,data_in5_2,data_in5_3,data_in5_4, data_in5_5, data_in5_6])
test_data_in = data_in2.iloc[eval_size_in:]
# test_data_in = data_in3
eval_size_out = int(len(data_out2) * 0.5)
full_data_out = pd.concat([data_out1] * 6 + [data_out2.iloc[0:eval_size_out]] * 6 + [data_out3] * 6 + [data_out5] * 6)
test_data_out = data_out2.iloc[eval_size_out+ts:]
# test_data_out = data_out3
train_arrT_in = full_data_in.to_numpy()
mean_in = train_arrT_in.mean(axis=0)
std_in = train_arrT_in.std(axis=0)
train_arrT_out = full_data_out.to_numpy()
max_out = train_arrT_out.max(axis=0)
min_out = train_arrT_out.min(axis=0)
data_in1 = transform_data(data_in1, mean_in, std_in, Data_frequency, Input_dim, ts)
data_in1_2 = transform_data(data_in1_2, mean_in, std_in, Data_frequency, Input_dim, ts)
data_in1_3 = transform_data(data_in1_3, mean_in, std_in, Data_frequency, Input_dim, ts)
data_in1_4 = transform_data(data_in1_4, mean_in, std_in, Data_frequency, Input_dim, ts)
data_in1_5 = transform_data(data_in1_5, mean_in, std_in, Data_frequency, Input_dim, ts)
data_in1_6 = transform_data(data_in1_6, mean_in, std_in, Data_frequency, Input_dim, ts)
data_in2 = transform_data(data_in2.iloc[0:eval_size_in], mean_in, std_in, Data_frequency, Input_dim, ts)
data_in2_2 = transform_data(data_in2_2.iloc[0:eval_size_in], mean_in, std_in, Data_frequency, Input_dim, ts)
data_in2_3 = transform_data(data_in2_3.iloc[0:eval_size_in], mean_in, std_in, Data_frequency, Input_dim, ts)
data_in2_4 = transform_data(data_in2_4.iloc[0:eval_size_in], mean_in, std_in, Data_frequency, Input_dim, ts)
data_in2_5 = transform_data(data_in2_5.iloc[0:eval_size_in], mean_in, std_in, Data_frequency, Input_dim, ts)
data_in2_6 = transform_data(data_in2_6.iloc[0:eval_size_in], mean_in, std_in, Data_frequency, Input_dim, ts)
data_in3 = transform_data(data_in3, mean_in, std_in, Data_frequency, Input_dim, ts)
data_in3_2 = transform_data(data_in3_2, mean_in, std_in, Data_frequency, Input_dim, ts)
data_in3_3 = transform_data(data_in3_3, mean_in, std_in, Data_frequency, Input_dim, ts)
data_in3_4 = transform_data(data_in3_4, mean_in, std_in, Data_frequency, Input_dim, ts)
data_in3_5 = transform_data(data_in3_5, mean_in, std_in, Data_frequency, Input_dim, ts)
data_in3_6 = transform_data(data_in3_6, mean_in, std_in, Data_frequency, Input_dim, ts)
data_in4 = transform_data(data_in4, mean_in, std_in, Data_frequency, Input_dim, ts)
data_in5 = transform_data(data_in5, mean_in, std_in, Data_frequency, Input_dim, ts)
data_in5_2 = transform_data(data_in5_2, mean_in, std_in, Data_frequency, Input_dim, ts)
data_in5_3 = transform_data(data_in5_3, mean_in, std_in, Data_frequency, Input_dim, ts)
data_in5_4 = transform_data(data_in5_4, mean_in, std_in, Data_frequency, Input_dim, ts)
data_in5_5 = transform_data(data_in5_5, mean_in, std_in, Data_frequency, Input_dim, ts)
data_in5_6 = transform_data(data_in5_6, mean_in, std_in, Data_frequency, Input_dim, ts)
# test_arr_in = torch.cat([data_in4, data_in5], dim=0)
# data_in1_tr = transform_data(data_in1_tr, mean_in, std_in, Data_frequency, Input_dim, ts)
# data_in2_tr = transform_data(data_in2_tr.iloc[0:eval_size_in], mean_in, std_in, Data_frequency, Input_dim, ts)
# full_arr_in = torch.cat([data_in1, data_in1_2, data_in1_3, data_in1_4, data_in1_5, data_in1_6,
# data_in2,data_in2_2,data_in2_3,data_in2_4,data_in2_5,data_in2_6,
# data_in3,data_in3_2,data_in3_3,data_in3_4,data_in3_5,data_in3_6,
# data_in5,data_in5_2,data_in5_3,data_in5_4,data_in5_5,data_in5_6], dim=0)
# full_arr_in = torch.cat([data_in1, data_in1_tr, data_in2, data_in2_tr], dim=0)
test_arr_in = transform_data(test_data_in, mean_in, std_in, Data_frequency, Input_dim, ts)
test_arr_in = Variable(torch.from_numpy(test_arr_in).float()).to(device)
# full_data_out2 = pd.concat([data_out1] * 2 + [data_out2.iloc[0:eval_size_out]] * 2)
# full_arr_out = (full_data_out2.to_numpy() - min_out) / (max_out - min_out)
test_arr_out = (test_data_out.to_numpy() - min_out) / (max_out - min_out)
#
# full_arr_out = Variable(torch.from_numpy(full_arr_out).float()).to(device)
test_arr_out = Variable(torch.from_numpy(test_arr_out).float()).to(device)
#
# full_dataset = torch.utils.data.TensorDataset(full_arr_in, full_arr_out)
test_dataset = torch.utils.data.TensorDataset(test_arr_in, test_arr_out)
#
# train_size = int(len(full_arr_in) * 0.7)
# val_size = len(full_arr_in) - train_size
# 对每个数据集单独分割并提取相应的输出数据
# datasets = [data_in1, data_in1_tr, data_in2, data_in2_tr]
# outputs = [data_out1, data_out1, data_out2.iloc[0:eval_size_out], data_out2.iloc[0:eval_size_out]]
datasets = [data_in1, data_in2, data_in4, data_in5]
outputs = [data_out1, data_out2.iloc[ts:eval_size_out], data_out4, data_out5]
# 转换numpy数组到torch张量
dataset_tensors = [torch.tensor(d).float().to(device) for d in datasets] # 这假设你的输入数据已经是适合的数值类型
# 这里不需要更改outputs,因为它们已经是DataFrame格式
train_inputs = []
train_outputs = []
val_inputs = []
val_outputs = []
for data, output in zip(dataset_tensors, outputs):
train_size = int(len(data) * 0.7)
val_size = len(data) - train_size
train_subset, val_subset = random_split(data, [train_size, val_size])
# 提取训练输入和输出
train_indices = train_subset.indices
train_inputs.append(data[train_indices])
train_outputs.append(extract_data_by_indices(output.to_numpy(), train_indices)) # 用to_numpy()确保是NumPy数组
# 提取验证输入和输出
val_indices = val_subset.indices
val_inputs.append(data[val_indices])
val_outputs.append(extract_data_by_indices(output.to_numpy(), val_indices))
# 合并训练和验证的输入输出,注意这里是Tensor操作
full_train_in = torch.cat(train_inputs, dim=0)
full_train_out = torch.tensor(np.concatenate(train_outputs)).float()
full_train_out = (full_train_out - min_out) / (max_out - min_out)
full_train_out = full_train_out.float().to(device)
full_val_in = torch.cat(val_inputs, dim=0)
full_val_out = torch.tensor(np.concatenate(val_outputs)).float()
full_val_out = (full_val_out - min_out) / (max_out - min_out)
full_val_out = full_val_out.float().to(device)
# 创建TensorDataset
full_train_dataset = TensorDataset(full_train_in, full_train_out)
full_val_dataset = TensorDataset(full_val_in, full_val_out)
# return full_dataset,test_dataset,train_size,val_size,max_out,min_out
return full_train_dataset, full_val_dataset, test_dataset, max_out, min_out