-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
center_head.py
416 lines (342 loc) · 19.4 KB
/
center_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import copy
import numpy as np
import torch
import torch.nn as nn
from torch.nn.init import kaiming_normal_
from ..model_utils import model_nms_utils
from ..model_utils import centernet_utils
from ...utils import loss_utils
from functools import partial
class SeparateHead(nn.Module):
def __init__(self, input_channels, sep_head_dict, init_bias=-2.19, use_bias=False, norm_func=None):
super().__init__()
self.sep_head_dict = sep_head_dict
for cur_name in self.sep_head_dict:
output_channels = self.sep_head_dict[cur_name]['out_channels']
num_conv = self.sep_head_dict[cur_name]['num_conv']
fc_list = []
for k in range(num_conv - 1):
fc_list.append(nn.Sequential(
nn.Conv2d(input_channels, input_channels, kernel_size=3, stride=1, padding=1, bias=use_bias),
nn.BatchNorm2d(input_channels) if norm_func is None else norm_func(input_channels),
nn.ReLU()
))
fc_list.append(nn.Conv2d(input_channels, output_channels, kernel_size=3, stride=1, padding=1, bias=True))
fc = nn.Sequential(*fc_list)
if 'hm' in cur_name:
fc[-1].bias.data.fill_(init_bias)
else:
for m in fc.modules():
if isinstance(m, nn.Conv2d):
kaiming_normal_(m.weight.data)
if hasattr(m, "bias") and m.bias is not None:
nn.init.constant_(m.bias, 0)
self.__setattr__(cur_name, fc)
def forward(self, x):
ret_dict = {}
for cur_name in self.sep_head_dict:
ret_dict[cur_name] = self.__getattr__(cur_name)(x)
return ret_dict
class CenterHead(nn.Module):
def __init__(self, model_cfg, input_channels, num_class, class_names, grid_size, point_cloud_range, voxel_size,
predict_boxes_when_training=True):
super().__init__()
self.model_cfg = model_cfg
self.num_class = num_class
self.grid_size = grid_size
self.point_cloud_range = point_cloud_range
self.voxel_size = voxel_size
self.feature_map_stride = self.model_cfg.TARGET_ASSIGNER_CONFIG.get('FEATURE_MAP_STRIDE', None)
self.class_names = class_names
self.class_names_each_head = []
self.class_id_mapping_each_head = []
for cur_class_names in self.model_cfg.CLASS_NAMES_EACH_HEAD:
self.class_names_each_head.append([x for x in cur_class_names if x in class_names])
cur_class_id_mapping = torch.from_numpy(np.array(
[self.class_names.index(x) for x in cur_class_names if x in class_names]
)).cuda()
self.class_id_mapping_each_head.append(cur_class_id_mapping)
total_classes = sum([len(x) for x in self.class_names_each_head])
assert total_classes == len(self.class_names), f'class_names_each_head={self.class_names_each_head}'
norm_func = partial(nn.BatchNorm2d, eps=self.model_cfg.get('BN_EPS', 1e-5), momentum=self.model_cfg.get('BN_MOM', 0.1))
self.shared_conv = nn.Sequential(
nn.Conv2d(
input_channels, self.model_cfg.SHARED_CONV_CHANNEL, 3, stride=1, padding=1,
bias=self.model_cfg.get('USE_BIAS_BEFORE_NORM', False)
),
norm_func(self.model_cfg.SHARED_CONV_CHANNEL),
nn.ReLU(),
)
self.heads_list = nn.ModuleList()
self.separate_head_cfg = self.model_cfg.SEPARATE_HEAD_CFG
for idx, cur_class_names in enumerate(self.class_names_each_head):
cur_head_dict = copy.deepcopy(self.separate_head_cfg.HEAD_DICT)
cur_head_dict['hm'] = dict(out_channels=len(cur_class_names), num_conv=self.model_cfg.NUM_HM_CONV)
self.heads_list.append(
SeparateHead(
input_channels=self.model_cfg.SHARED_CONV_CHANNEL,
sep_head_dict=cur_head_dict,
init_bias=-2.19,
use_bias=self.model_cfg.get('USE_BIAS_BEFORE_NORM', False),
norm_func=norm_func
)
)
self.predict_boxes_when_training = predict_boxes_when_training
self.forward_ret_dict = {}
self.build_losses()
def build_losses(self):
self.add_module('hm_loss_func', loss_utils.FocalLossCenterNet())
self.add_module('reg_loss_func', loss_utils.RegLossCenterNet())
def assign_target_of_single_head(
self, num_classes, gt_boxes, feature_map_size, feature_map_stride, num_max_objs=500,
gaussian_overlap=0.1, min_radius=2
):
"""
Args:
gt_boxes: (N, 8)
feature_map_size: (2), [x, y]
Returns:
"""
heatmap = gt_boxes.new_zeros(num_classes, feature_map_size[1], feature_map_size[0])
ret_boxes = gt_boxes.new_zeros((num_max_objs, gt_boxes.shape[-1] - 1 + 1))
inds = gt_boxes.new_zeros(num_max_objs).long()
mask = gt_boxes.new_zeros(num_max_objs).long()
ret_boxes_src = gt_boxes.new_zeros(num_max_objs, gt_boxes.shape[-1])
ret_boxes_src[:gt_boxes.shape[0]] = gt_boxes
x, y, z = gt_boxes[:, 0], gt_boxes[:, 1], gt_boxes[:, 2]
coord_x = (x - self.point_cloud_range[0]) / self.voxel_size[0] / feature_map_stride
coord_y = (y - self.point_cloud_range[1]) / self.voxel_size[1] / feature_map_stride
coord_x = torch.clamp(coord_x, min=0, max=feature_map_size[0] - 0.5) # bugfixed: 1e-6 does not work for center.int()
coord_y = torch.clamp(coord_y, min=0, max=feature_map_size[1] - 0.5) #
center = torch.cat((coord_x[:, None], coord_y[:, None]), dim=-1)
center_int = center.int()
center_int_float = center_int.float()
dx, dy, dz = gt_boxes[:, 3], gt_boxes[:, 4], gt_boxes[:, 5]
dx = dx / self.voxel_size[0] / feature_map_stride
dy = dy / self.voxel_size[1] / feature_map_stride
radius = centernet_utils.gaussian_radius(dx, dy, min_overlap=gaussian_overlap)
radius = torch.clamp_min(radius.int(), min=min_radius)
for k in range(min(num_max_objs, gt_boxes.shape[0])):
if dx[k] <= 0 or dy[k] <= 0:
continue
if not (0 <= center_int[k][0] <= feature_map_size[0] and 0 <= center_int[k][1] <= feature_map_size[1]):
continue
cur_class_id = (gt_boxes[k, -1] - 1).long()
centernet_utils.draw_gaussian_to_heatmap(heatmap[cur_class_id], center[k], radius[k].item())
inds[k] = center_int[k, 1] * feature_map_size[0] + center_int[k, 0]
mask[k] = 1
ret_boxes[k, 0:2] = center[k] - center_int_float[k].float()
ret_boxes[k, 2] = z[k]
ret_boxes[k, 3:6] = gt_boxes[k, 3:6].log()
ret_boxes[k, 6] = torch.cos(gt_boxes[k, 6])
ret_boxes[k, 7] = torch.sin(gt_boxes[k, 6])
if gt_boxes.shape[1] > 8:
ret_boxes[k, 8:] = gt_boxes[k, 7:-1]
return heatmap, ret_boxes, inds, mask, ret_boxes_src
def assign_targets(self, gt_boxes, feature_map_size=None, **kwargs):
"""
Args:
gt_boxes: (B, M, 8)
range_image_polar: (B, 3, H, W)
feature_map_size: (2) [H, W]
spatial_cartesian: (B, 4, H, W)
Returns:
"""
feature_map_size = feature_map_size[::-1] # [H, W] ==> [x, y]
target_assigner_cfg = self.model_cfg.TARGET_ASSIGNER_CONFIG
# feature_map_size = self.grid_size[:2] // target_assigner_cfg.FEATURE_MAP_STRIDE
batch_size = gt_boxes.shape[0]
ret_dict = {
'heatmaps': [],
'target_boxes': [],
'inds': [],
'masks': [],
'heatmap_masks': [],
'target_boxes_src': [],
}
all_names = np.array(['bg', *self.class_names])
for idx, cur_class_names in enumerate(self.class_names_each_head):
heatmap_list, target_boxes_list, inds_list, masks_list, target_boxes_src_list = [], [], [], [], []
for bs_idx in range(batch_size):
cur_gt_boxes = gt_boxes[bs_idx]
gt_class_names = all_names[cur_gt_boxes[:, -1].cpu().long().numpy()]
gt_boxes_single_head = []
for idx, name in enumerate(gt_class_names):
if name not in cur_class_names:
continue
temp_box = cur_gt_boxes[idx]
temp_box[-1] = cur_class_names.index(name) + 1
gt_boxes_single_head.append(temp_box[None, :])
if len(gt_boxes_single_head) == 0:
gt_boxes_single_head = cur_gt_boxes[:0, :]
else:
gt_boxes_single_head = torch.cat(gt_boxes_single_head, dim=0)
heatmap, ret_boxes, inds, mask, ret_boxes_src = self.assign_target_of_single_head(
num_classes=len(cur_class_names), gt_boxes=gt_boxes_single_head.cpu(),
feature_map_size=feature_map_size, feature_map_stride=target_assigner_cfg.FEATURE_MAP_STRIDE,
num_max_objs=target_assigner_cfg.NUM_MAX_OBJS,
gaussian_overlap=target_assigner_cfg.GAUSSIAN_OVERLAP,
min_radius=target_assigner_cfg.MIN_RADIUS,
)
heatmap_list.append(heatmap.to(gt_boxes_single_head.device))
target_boxes_list.append(ret_boxes.to(gt_boxes_single_head.device))
inds_list.append(inds.to(gt_boxes_single_head.device))
masks_list.append(mask.to(gt_boxes_single_head.device))
target_boxes_src_list.append(ret_boxes_src.to(gt_boxes_single_head.device))
ret_dict['heatmaps'].append(torch.stack(heatmap_list, dim=0))
ret_dict['target_boxes'].append(torch.stack(target_boxes_list, dim=0))
ret_dict['inds'].append(torch.stack(inds_list, dim=0))
ret_dict['masks'].append(torch.stack(masks_list, dim=0))
ret_dict['target_boxes_src'].append(torch.stack(target_boxes_src_list, dim=0))
return ret_dict
def sigmoid(self, x):
y = torch.clamp(x.sigmoid(), min=1e-4, max=1 - 1e-4)
return y
def get_loss(self):
pred_dicts = self.forward_ret_dict['pred_dicts']
target_dicts = self.forward_ret_dict['target_dicts']
tb_dict = {}
loss = 0
for idx, pred_dict in enumerate(pred_dicts):
pred_dict['hm'] = self.sigmoid(pred_dict['hm'])
hm_loss = self.hm_loss_func(pred_dict['hm'], target_dicts['heatmaps'][idx])
hm_loss *= self.model_cfg.LOSS_CONFIG.LOSS_WEIGHTS['cls_weight']
target_boxes = target_dicts['target_boxes'][idx]
pred_boxes = torch.cat([pred_dict[head_name] for head_name in self.separate_head_cfg.HEAD_ORDER], dim=1)
reg_loss = self.reg_loss_func(
pred_boxes, target_dicts['masks'][idx], target_dicts['inds'][idx], target_boxes
)
loc_loss = (reg_loss * reg_loss.new_tensor(self.model_cfg.LOSS_CONFIG.LOSS_WEIGHTS['code_weights'])).sum()
loc_loss = loc_loss * self.model_cfg.LOSS_CONFIG.LOSS_WEIGHTS['loc_weight']
loss += hm_loss + loc_loss
tb_dict['hm_loss_head_%d' % idx] = hm_loss.item()
tb_dict['loc_loss_head_%d' % idx] = loc_loss.item()
if 'iou' in pred_dict or self.model_cfg.get('IOU_REG_LOSS', False):
batch_box_preds = centernet_utils.decode_bbox_from_pred_dicts(
pred_dict=pred_dict,
point_cloud_range=self.point_cloud_range, voxel_size=self.voxel_size,
feature_map_stride=self.feature_map_stride
) # (B, H, W, 7 or 9)
if 'iou' in pred_dict:
batch_box_preds_for_iou = batch_box_preds.permute(0, 3, 1, 2) # (B, 7 or 9, H, W)
iou_loss = loss_utils.calculate_iou_loss_centerhead(
iou_preds=pred_dict['iou'],
batch_box_preds=batch_box_preds_for_iou.clone().detach(),
mask=target_dicts['masks'][idx],
ind=target_dicts['inds'][idx], gt_boxes=target_dicts['target_boxes_src'][idx]
)
loss += iou_loss
tb_dict['iou_loss_head_%d' % idx] = iou_loss.item()
if self.model_cfg.get('IOU_REG_LOSS', False):
iou_reg_loss = loss_utils.calculate_iou_reg_loss_centerhead(
batch_box_preds=batch_box_preds_for_iou,
mask=target_dicts['masks'][idx],
ind=target_dicts['inds'][idx], gt_boxes=target_dicts['target_boxes_src'][idx]
)
if target_dicts['masks'][idx].sum().item() != 0:
iou_reg_loss = iou_reg_loss * self.model_cfg.LOSS_CONFIG.LOSS_WEIGHTS['loc_weight']
loss += iou_reg_loss
tb_dict['iou_reg_loss_head_%d' % idx] = iou_reg_loss.item()
else:
loss += (batch_box_preds_for_iou * 0.).sum()
tb_dict['iou_reg_loss_head_%d' % idx] = (batch_box_preds_for_iou * 0.).sum()
tb_dict['rpn_loss'] = loss.item()
return loss, tb_dict
def generate_predicted_boxes(self, batch_size, pred_dicts):
post_process_cfg = self.model_cfg.POST_PROCESSING
post_center_limit_range = torch.tensor(post_process_cfg.POST_CENTER_LIMIT_RANGE).cuda().float()
ret_dict = [{
'pred_boxes': [],
'pred_scores': [],
'pred_labels': [],
} for k in range(batch_size)]
for idx, pred_dict in enumerate(pred_dicts):
batch_hm = pred_dict['hm'].sigmoid()
batch_center = pred_dict['center']
batch_center_z = pred_dict['center_z']
batch_dim = pred_dict['dim'].exp()
batch_rot_cos = pred_dict['rot'][:, 0].unsqueeze(dim=1)
batch_rot_sin = pred_dict['rot'][:, 1].unsqueeze(dim=1)
batch_vel = pred_dict['vel'] if 'vel' in self.separate_head_cfg.HEAD_ORDER else None
batch_iou = (pred_dict['iou'] + 1) * 0.5 if 'iou' in pred_dict else None
final_pred_dicts = centernet_utils.decode_bbox_from_heatmap(
heatmap=batch_hm, rot_cos=batch_rot_cos, rot_sin=batch_rot_sin,
center=batch_center, center_z=batch_center_z, dim=batch_dim, vel=batch_vel, iou=batch_iou,
point_cloud_range=self.point_cloud_range, voxel_size=self.voxel_size,
feature_map_stride=self.feature_map_stride,
K=post_process_cfg.MAX_OBJ_PER_SAMPLE,
circle_nms=(post_process_cfg.NMS_CONFIG.NMS_TYPE == 'circle_nms'),
score_thresh=post_process_cfg.SCORE_THRESH,
post_center_limit_range=post_center_limit_range
)
for k, final_dict in enumerate(final_pred_dicts):
final_dict['pred_labels'] = self.class_id_mapping_each_head[idx][final_dict['pred_labels'].long()]
if post_process_cfg.get('USE_IOU_TO_RECTIFY_SCORE', False) and 'pred_iou' in final_dict:
pred_iou = torch.clamp(final_dict['pred_iou'], min=0, max=1.0)
IOU_RECTIFIER = final_dict['pred_scores'].new_tensor(post_process_cfg.IOU_RECTIFIER)
final_dict['pred_scores'] = torch.pow(final_dict['pred_scores'], 1 - IOU_RECTIFIER[final_dict['pred_labels']]) * torch.pow(pred_iou, IOU_RECTIFIER[final_dict['pred_labels']])
if post_process_cfg.NMS_CONFIG.NMS_TYPE not in ['circle_nms', 'class_specific_nms']:
selected, selected_scores = model_nms_utils.class_agnostic_nms(
box_scores=final_dict['pred_scores'], box_preds=final_dict['pred_boxes'],
nms_config=post_process_cfg.NMS_CONFIG,
score_thresh=None
)
elif post_process_cfg.NMS_CONFIG.NMS_TYPE == 'class_specific_nms':
selected, selected_scores = model_nms_utils.class_specific_nms(
box_scores=final_dict['pred_scores'], box_preds=final_dict['pred_boxes'],
box_labels=final_dict['pred_labels'], nms_config=post_process_cfg.NMS_CONFIG,
score_thresh=post_process_cfg.NMS_CONFIG.get('SCORE_THRESH', None)
)
elif post_process_cfg.NMS_CONFIG.NMS_TYPE == 'circle_nms':
raise NotImplementedError
final_dict['pred_boxes'] = final_dict['pred_boxes'][selected]
final_dict['pred_scores'] = selected_scores
final_dict['pred_labels'] = final_dict['pred_labels'][selected]
ret_dict[k]['pred_boxes'].append(final_dict['pred_boxes'])
ret_dict[k]['pred_scores'].append(final_dict['pred_scores'])
ret_dict[k]['pred_labels'].append(final_dict['pred_labels'])
for k in range(batch_size):
ret_dict[k]['pred_boxes'] = torch.cat(ret_dict[k]['pred_boxes'], dim=0)
ret_dict[k]['pred_scores'] = torch.cat(ret_dict[k]['pred_scores'], dim=0)
ret_dict[k]['pred_labels'] = torch.cat(ret_dict[k]['pred_labels'], dim=0) + 1
return ret_dict
@staticmethod
def reorder_rois_for_refining(batch_size, pred_dicts):
num_max_rois = max([len(cur_dict['pred_boxes']) for cur_dict in pred_dicts])
num_max_rois = max(1, num_max_rois) # at least one faked rois to avoid error
pred_boxes = pred_dicts[0]['pred_boxes']
rois = pred_boxes.new_zeros((batch_size, num_max_rois, pred_boxes.shape[-1]))
roi_scores = pred_boxes.new_zeros((batch_size, num_max_rois))
roi_labels = pred_boxes.new_zeros((batch_size, num_max_rois)).long()
for bs_idx in range(batch_size):
num_boxes = len(pred_dicts[bs_idx]['pred_boxes'])
rois[bs_idx, :num_boxes, :] = pred_dicts[bs_idx]['pred_boxes']
roi_scores[bs_idx, :num_boxes] = pred_dicts[bs_idx]['pred_scores']
roi_labels[bs_idx, :num_boxes] = pred_dicts[bs_idx]['pred_labels']
return rois, roi_scores, roi_labels
def forward(self, data_dict):
spatial_features_2d = data_dict['spatial_features_2d']
x = self.shared_conv(spatial_features_2d)
pred_dicts = []
for head in self.heads_list:
pred_dicts.append(head(x))
if self.training:
target_dict = self.assign_targets(
data_dict['gt_boxes'], feature_map_size=spatial_features_2d.size()[2:],
feature_map_stride=data_dict.get('spatial_features_2d_strides', None)
)
self.forward_ret_dict['target_dicts'] = target_dict
self.forward_ret_dict['pred_dicts'] = pred_dicts
if not self.training or self.predict_boxes_when_training:
pred_dicts = self.generate_predicted_boxes(
data_dict['batch_size'], pred_dicts
)
if self.predict_boxes_when_training:
rois, roi_scores, roi_labels = self.reorder_rois_for_refining(data_dict['batch_size'], pred_dicts)
data_dict['rois'] = rois
data_dict['roi_scores'] = roi_scores
data_dict['roi_labels'] = roi_labels
data_dict['has_class_labels'] = True
else:
data_dict['final_box_dicts'] = pred_dicts
return data_dict