We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? # to your account
Once I use 'resume_from' in config, mmaction2 will report error.
2021-05-19 01:08:48,176 - mmaction - INFO - Environment info: ------------------------------------------------------------ sys.platform: linux Python: 3.7.7 (default, May 7 2020, 21:25:33) [GCC 7.3.0] CUDA available: True GPU 0,1,2,3: Tesla V100-PCIE-16GB CUDA_HOME: /usr/local/cuda NVCC: Cuda compilation tools, release 10.1, V10.1.243 GCC: gcc (Ubuntu 7.4.0-1ubuntu1~18.04.1) 7.4.0 PyTorch: 1.6.0 PyTorch compiling details: PyTorch built with: - GCC 7.3 - C++ Version: 201402 - Intel(R) Math Kernel Library Version 2020.0.1 Product Build 20200208 for Intel(R) 64 architecture applications - Intel(R) MKL-DNN v1.5.0 (Git Hash e2ac1fac44c5078ca927cb9b90e1b3066a0b2ed0) - OpenMP 201511 (a.k.a. OpenMP 4.5) - NNPACK is enabled - CPU capability usage: AVX2 - CUDA Runtime 10.1 - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_37,code=compute_37 - CuDNN 7.6.3 - Magma 2.5.2 - Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN_WRAPPER -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_STATIC_DISPATCH=OFF, TorchVision: 0.7.0 OpenCV: 4.5.1 MMCV: 1.3.0 MMCV Compiler: GCC 7.3 MMCV CUDA Compiler: 10.1 MMAction2: 0.13.0+6a252b8 ------------------------------------------------------------ 2021-05-19 01:08:48,176 - mmaction - INFO - Distributed training: False 2021-05-19 01:08:48,176 - mmaction - INFO - Config: /mmaction2/configs/recognition/tin/tin_r50_1x1x8_40e_sthv2_rgb.py checkpoint_config = dict(interval=1) log_config = dict( interval=20, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook'), ]) # runtime settings dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] # model settings model = dict( type='Recognizer2D', backbone=dict( type='ResNetTIN', pretrained='torchvision://resnet50', depth=50, norm_eval=False, shift_div=4), cls_head=dict( type='TSMHead', num_classes=174, in_channels=2048, spatial_type='avg', consensus=dict(type='AvgConsensus', dim=1), dropout_ratio=0.8, init_std=0.001, is_shift=False), # model training and testing settings train_cfg=None, test_cfg=dict(average_clips=None)) # dataset settings dataset_type = 'RawframeDataset' data_root = 'data/sthv2/rawframes' data_root_val = 'data/sthv2/rawframes' ann_file_train = 'data/sthv2/sthv2_train_list_rawframes.txt' ann_file_val = 'data/sthv2/sthv2_val_list_rawframes.txt' ann_file_test = 'data/sthv2/sthv2_val_list_rawframes.txt' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False) train_pipeline = [ dict(type='SampleFrames', clip_len=1, frame_interval=1, num_clips=8), dict(type='RawFrameDecode'), dict(type='Resize', scale=(-1, 256)), dict( type='MultiScaleCrop', input_size=224, scales=(1, 0.875, 0.75, 0.66), random_crop=False, max_wh_scale_gap=1), dict(type='Resize', scale=(224, 224), keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs', 'label']) ] val_pipeline = [ dict( type='SampleFrames', clip_len=1, frame_interval=1, num_clips=8, test_mode=True), dict(type='RawFrameDecode'), dict(type='Resize', scale=(-1, 256)), dict(type='CenterCrop', crop_size=224), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs']) ] test_pipeline = [ dict( type='SampleFrames', clip_len=1, frame_interval=1, num_clips=8, test_mode=True), dict(type='RawFrameDecode'), dict(type='Resize', scale=(-1, 256)), dict(type='CenterCrop', crop_size=224), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs']) ] data = dict( videos_per_gpu=12, #6, workers_per_gpu=4, train=dict( type=dataset_type, ann_file=ann_file_train, data_prefix=data_root, pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=ann_file_val, data_prefix=data_root_val, pipeline=val_pipeline), test=dict( type=dataset_type, ann_file=ann_file_test, data_prefix=data_root_val, pipeline=test_pipeline)) evaluation = dict( interval=2, metrics=['top_k_accuracy', 'mean_class_accuracy']) # optimizer optimizer = dict( type='SGD', constructor='TSMOptimizerConstructor', paramwise_cfg=dict(fc_lr5=True), lr=0.02, # this lr is used for 8 gpus momentum=0.9, weight_decay=0.0005) optimizer_config = dict(grad_clip=dict(max_norm=20, norm_type=2)) # learning policy lr_config = dict( policy='CosineAnnealing', by_epoch=False, warmup='linear', warmup_iters=1, warmup_by_epoch=True, min_lr=0) total_epochs = 40 # runtime settings work_dir = './work_dirs/tin_r50_1x1x8_40e_sthv2_rgb/' resume_from = './work_dirs/tin_r50_1x1x8_40e_sthv2_rgb/epoch_29.pth' Use load_from_torchvision loader 2021-05-19 01:08:49,657 - mmaction - INFO - These parameters in pretrained checkpoint are not loaded: {'fc.weight', 'fc.bias'} 2021-05-19 01:08:55,979 - mmaction - INFO - load checkpoint from ./work_dirs/tin_r50_1x1x8_40e_sthv2_rgb/epoch_29.pth 2021-05-19 01:08:55,979 - mmaction - INFO - Use load_from_local loader Traceback (most recent call last): File "/opt/conda/lib/python3.7/site-packages/mmcv/utils/config.py", line 96, in _validate_py_syntax ast.parse(content) File "/opt/conda/lib/python3.7/ast.py", line 35, in parse return compile(source, filename, mode, PyCF_ONLY_AST) File "<unknown>", line 1 /mmaction2/configs/_base_/models/tin_r50.py ^ SyntaxError: invalid syntax During handling of the above exception, another exception occurred: Traceback (most recent call last): File "tools/train.py", line 197, in <module> main() File "tools/train.py", line 193, in main meta=meta) File "/mmaction2/mmaction/apis/train.py", line 157, in train_model runner.resume(cfg.resume_from) File "/opt/conda/lib/python3.7/site-packages/mmcv/runner/base_runner.py", line 347, in resume checkpoint['meta']['config'], file_format='.py') File "/opt/conda/lib/python3.7/site-packages/mmcv/utils/config.py", line 279, in fromstring cfg = Config.fromfile(temp_file.name) File "/opt/conda/lib/python3.7/site-packages/mmcv/utils/config.py", line 252, in fromfile use_predefined_variables) File "/opt/conda/lib/python3.7/site-packages/mmcv/utils/config.py", line 145, in _file2dict Config._validate_py_syntax(filename) File "/opt/conda/lib/python3.7/site-packages/mmcv/utils/config.py", line 98, in _validate_py_syntax raise SyntaxError('There are syntax errors in config ' SyntaxError: There are syntax errors in config file /tmp/tmpkq2pesx0.py: invalid syntax (<unknown>, line 1) Exception ignored in: <function _TemporaryFileCloser.__del__ at 0x7f1f26907830> Traceback (most recent call last): File "/opt/conda/lib/python3.7/tempfile.py", line 448, in __del__ self.close() File "/opt/conda/lib/python3.7/tempfile.py", line 444, in close unlink(self.name) FileNotFoundError: [Errno 2] No such file or directory: '/tmp/tmpenshl8j0/tmp0er7xxxe.py'
The text was updated successfully, but these errors were encountered:
This is fixed in #820
Sorry, something went wrong.
Thanks
No branches or pull requests
Once I use 'resume_from' in config, mmaction2 will report error.
The text was updated successfully, but these errors were encountered: