-
Notifications
You must be signed in to change notification settings - Fork 659
/
Copy pathregression_test.py
1032 lines (888 loc) · 37.6 KB
/
regression_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import glob
import logging
import os
import subprocess
from datetime import datetime
from pathlib import Path
from typing import List, Union
import mmengine
import openpyxl
import pandas as pd
import yaml
from torch.hub import download_url_to_file
from torch.multiprocessing import set_start_method
from tqdm import tqdm
import mmdeploy.version
from mmdeploy.utils import (get_backend, get_codebase, get_root_logger,
is_dynamic_shape)
def parse_args():
parser = argparse.ArgumentParser(description='Regression Test')
parser.add_argument(
'--codebase',
nargs='+',
help='regression test yaml path.',
default=[
'mmpretrain', 'mmdet', 'mmseg', 'mmpose', 'mmocr', 'mmagic',
'mmrotate', 'mmdet3d'
])
parser.add_argument(
'-p',
'--performance',
default=False,
action='store_true',
help='test performance if it set')
parser.add_argument(
'--backends', nargs='+', help='test specific backend(s)')
parser.add_argument(
'--models', nargs='+', default=['all'], help='test specific model(s)')
parser.add_argument(
'--work-dir',
type=str,
help='the dir to save logs and models',
default='../mmdeploy_regression_working_dir')
parser.add_argument(
'--checkpoint-dir',
type=str,
help='the dir to save checkpoint for all model',
default='../mmdeploy_checkpoints')
parser.add_argument(
'--device',
type=str,
help='Device type, cuda:id or cpu, cuda:0 as default',
default='cuda:0')
parser.add_argument(
'--log-level',
help='set log level',
default='INFO',
choices=list(logging._nameToLevel.keys()))
args = parser.parse_args()
return args
def merge_report(work_dir: str, logger: logging.Logger):
"""Merge all the report into one report.
Args:
work_dir (str): Work dir that including all reports.
logger (logging.Logger): Logger handler.
"""
work_dir = Path(work_dir)
res_file = work_dir.joinpath(
f'mmdeploy_regression_test_{mmdeploy.version.__version__}.xlsx')
logger.info(f'Whole result report saving in {res_file}')
if res_file.exists():
# delete if it existed
res_file.unlink()
for report_file in work_dir.iterdir():
if report_file.name.startswith('.~'):
# skip unclosed temp file
continue
if '_report.xlsx' not in report_file.name or \
report_file.name == res_file.name or \
not report_file.is_file():
# skip other file
continue
# get info from report
logger.info(f'Merging {report_file}')
df = pd.read_excel(str(report_file))
df.rename(columns={'Unnamed: 0': 'Index'}, inplace=True)
# get key then convert to list
keys = list(df.keys())
values = df.values.tolist()
# sheet name
sheet_name = report_file.stem.split('_')[0]
# begin to write
if res_file.exists():
# load if it existed
wb = openpyxl.load_workbook(str(res_file))
else:
wb = openpyxl.Workbook()
# delete if sheet already exist
if sheet_name in wb.sheetnames:
wb.remove(wb[sheet_name])
# create sheet
wb.create_sheet(title=sheet_name, index=0)
# write in row
wb[sheet_name].append(keys)
for value in values:
wb[sheet_name].append(value)
# delete the blank sheet
for name in wb.sheetnames:
ws = wb[name]
if ws.cell(1, 1).value is None:
wb.remove(ws)
# save to file
wb.save(str(res_file))
logger.info('Report merge successful.')
def get_model_metafile_info(global_info: dict, model_info: dict,
logger: logging.Logger):
"""Get model metafile information.
Args:
global_info (dict): global info from deploy yaml.
model_info (dict): model info from deploy yaml.
logger (logging.Logger): Logger handler.
Returns:
Dict: Meta info of each model config
"""
# get info from global_info and model_info
checkpoint_dir = global_info.get('checkpoint_dir', None)
assert checkpoint_dir is not None
codebase_dir = global_info.get('codebase_dir', None)
assert codebase_dir is not None
codebase_name = global_info.get('codebase_name', None)
assert codebase_name is not None
model_config_files = model_info.get('model_configs', [])
assert len(model_config_files) > 0
# make checkpoint save directory
model_name = _filter_string(model_info.get('name', 'model'))
checkpoint_save_dir = Path(checkpoint_dir).joinpath(
codebase_name, model_name)
checkpoint_save_dir.mkdir(parents=True, exist_ok=True)
logger.info(f'Saving checkpoint in {checkpoint_save_dir}')
# get model metafile info
metafile_path = Path(codebase_dir).joinpath(model_info.get('metafile'))
if not metafile_path.exists():
logger.warning(f'Metafile not exists: {metafile_path}')
return [], '', ''
with open(metafile_path) as f:
metafile_info = yaml.load(f, Loader=yaml.FullLoader)
model_meta_info = dict()
for meta_model in metafile_info.get('Models'):
if str(meta_model.get('Config')) not in model_config_files:
# skip if the model not in model_config_files
logger.warning(f'{meta_model.get("Config")} '
f'not in {model_config_files}, pls check ! '
'Skip it...')
continue
# get meta info
model_meta_info.update({meta_model.get('Config'): meta_model})
# get weight url
weights_url = meta_model.get('Weights')
weights_name = str(weights_url).split('/')[-1]
weights_save_path = checkpoint_save_dir.joinpath(weights_name)
if weights_save_path.exists() and \
not global_info.get('checkpoint_force_download', False):
logger.info(f'model {weights_name} exist, skip download it...')
continue
# Download weight
logger.info(f'Downloading {weights_url} to {weights_save_path}')
download_url_to_file(
weights_url, str(weights_save_path), progress=True)
# check weather the weight download successful
if not weights_save_path.exists():
raise FileExistsError(f'Weight {weights_name} download fail')
logger.info('All models had been downloaded successful !')
return model_meta_info, checkpoint_save_dir, codebase_dir
def update_report(report_dict: dict, model_name: str, model_config: str,
task_name: str, checkpoint: str, dataset: str,
backend_name: str, deploy_config: str,
static_or_dynamic: str, precision_type: str,
conversion_result: str, fps: str, metric_info: list,
test_pass: str, report_txt_path: Path, codebase_name: str):
"""Update report information.
Args:
report_dict (dict): Report info dict.
model_name (str): Model name.
model_config (str): Model config name.
task_name (str): Task name.
checkpoint (str): Model checkpoint name.
dataset (str): Dataset name.
backend_name (str): Backend name.
deploy_config (str): Deploy config name.
static_or_dynamic (str): Static or dynamic.
precision_type (str): Precision type of the model.
conversion_result (str): Conversion result: Successful or Fail.
fps (str): Inference speed (ms/im).
metric_info (list): Metric info list of the ${modelName}.yml.
test_pass (str): Test result: Pass or Fail.
report_txt_path (Path): Report txt path.
codebase_name (str): Codebase name.
"""
# save to tmp file
tmp_str = f'{model_name},{model_config},{task_name},{checkpoint},' \
f'{dataset},{backend_name},{deploy_config},' \
f'{static_or_dynamic},{precision_type},{conversion_result},'
# save to report
report_dict.get('Model').append(model_name)
report_dict.get('Model Config').append(model_config)
report_dict.get('Task').append(task_name)
report_dict.get('Checkpoint').append(checkpoint)
report_dict.get('Dataset').append(dataset)
report_dict.get('Backend').append(backend_name)
report_dict.get('Deploy Config').append(deploy_config)
report_dict.get('Static or Dynamic').append(static_or_dynamic)
report_dict.get('Precision Type').append(precision_type)
report_dict.get('Conversion Result').append(conversion_result)
# report_dict.get('FPS').append(fps)
for metric in metric_info:
for metric_name, metric_value in metric.items():
metric_name = str(metric_name)
report_dict.get(metric_name).append(metric_value)
tmp_str += f'{metric_value},'
report_dict.get('Test Pass').append(test_pass)
tmp_str += f'{test_pass}\n'
with open(report_txt_path, 'a+', encoding='utf-8') as f:
f.write(tmp_str)
def get_pytorch_result(model_name: str, meta_info: dict, checkpoint_path: Path,
model_config_path: Path, model_config_name: str,
test_yaml_metric_info: dict, report_dict: dict,
logger: logging.Logger, report_txt_path: Path,
codebase_name: str):
"""Get metric from metafile info of the model.
Args:
model_name (str): Name of model.
meta_info (dict): Metafile info from model's metafile.yml.
checkpoint_path (Path): Checkpoint path.
model_config_path (Path): Model config path.
model_config_name (str): Name of model config in meta_info.
test_yaml_metric_info (dict): Metrics info from test yaml.
report_dict (dict): Report info dict.
logger (logging.Logger): Logger.
report_txt_path (Path): Report txt path.
codebase_name (str): Codebase name.
Returns:
Dict: metric info of the model
"""
if model_config_name not in meta_info:
logger.warning(
f'{model_config_name} not in meta_info, which is {meta_info}')
return {}
# get metric
model_info = meta_info[model_config_name]
metafile_metric_info = model_info['Results']
# deal with mmseg case
if not isinstance(metafile_metric_info, (list, tuple)):
metafile_metric_info = [metafile_metric_info]
pytorch_metric = dict()
using_dataset = set()
using_task = set()
datasets = []
# Get metrics info from metafile
for metafile_metric in metafile_metric_info:
task_name = metafile_metric['Task']
dataset = metafile_metric['Dataset']
# check if metafile use the same metric on several datasets for mmagic
task_info = set([_['Task'] for _ in metafile_metric_info])
if len(metafile_metric_info) > 1 and len(task_info) == 1:
for k, v in metafile_metric['Metrics'].items():
pytorch_metric[f'{dataset} {k}'] = v
else:
pytorch_metric.update(metafile_metric['Metrics'])
datasets.append(dataset)
using_task.add(task_name)
using_dataset.add(dataset)
dataset_type = '+'.join(list(using_dataset))
task_type = '+'.join(list(using_task))
metric_list = []
for metric, metric_info in test_yaml_metric_info.items():
value = '-'
if metric in pytorch_metric:
if 'dataset' in metric_info and metric_info['dataset'] in datasets:
idx = datasets.index(metric_info['dataset'])
pytorch_metric.update(metafile_metric_info[idx]['Metrics'])
value = pytorch_metric[metric]
metric_list.append({metric: value})
valid_pytorch_metric = {
k: v
for k, v in pytorch_metric.items() if k in test_yaml_metric_info
}
# get pytorch fps value
fps_info = model_info.get('Metadata', {}).get('inference time (ms/im)')
if fps_info is None:
fps = '-'
elif isinstance(fps_info, list):
fps = fps_info[0].get('value')
else:
fps = fps_info.get('value')
logger.info(f'Got metric_list = {metric_list} ')
logger.info(f'Got pytorch_metric = {pytorch_metric} ')
# update report
update_report(
report_dict=report_dict,
model_name=model_name,
model_config=str(model_config_path),
task_name=task_type,
checkpoint=str(checkpoint_path),
dataset=dataset_type,
backend_name='Pytorch',
deploy_config='-',
static_or_dynamic='-',
precision_type='-',
conversion_result='-',
fps=fps,
metric_info=metric_list,
test_pass='-',
report_txt_path=report_txt_path,
codebase_name=codebase_name)
logger.info(f'Got {model_config_path} metric: {valid_pytorch_metric}')
dataset_info = dict(dataset=dataset_type, task=task_type)
return valid_pytorch_metric, dataset_info
def parse_test_log(work_dir: str) -> dict:
"""Parse metrics result from output json file.
Args:
work_dir: work directory that has output json file.
Returns:
dict: metric results
"""
logger = get_root_logger()
json_files = glob.glob(os.path.join(work_dir, '*', '*.json'))
json_path = None
newest_date = None
# filter json and get latest json file
for f in json_files:
fname = os.path.split(f)[1].strip('.json')
try:
date = datetime.strptime(fname, '%Y%m%d_%H%M%S')
if newest_date is None:
newest_date = date
json_path = f
elif date > newest_date:
newest_date = date
json_path = f
except Exception:
pass
if (not os.path.exists(work_dir)) or json_path is None:
logger.warning(f'Not json files found in {work_dir}')
result = {}
else:
logger.info(f'Parse test result from {json_path}')
result = mmengine.load(json_path)
return result
def get_fps_metric(shell_res: int, pytorch_metric: dict, metric_info: dict,
work_path: Path):
"""Get fps and metric.
Args:
shell_res (int): Backend convert result: 0 is success.
pytorch_metric (dict): Metric info of pytorch metafile.
work_path (Path): Logger path.
metric_info (dict): Metric info.
Returns:
Float: fps: FPS of the model.
List: metric_list: metric result list.
Bool: test_pass: If the test pass or not.
"""
# check if converted successes or not.
fps = '-'
if shell_res != 0:
backend_results = {}
else:
backend_results = parse_test_log(work_path)
compare_results = {}
output_result = {}
for metric_name, metric_value in pytorch_metric.items():
metric_key = metric_info[metric_name]['metric_key']
tolerance = metric_info[metric_name]['tolerance']
multi_value = metric_info[metric_name].get('multi_value', 1.0)
compare_flag = False
output_result[metric_name] = 'x'
if metric_key in backend_results:
backend_value = backend_results[metric_key] * multi_value
output_result[metric_name] = backend_value
if backend_value >= metric_value - tolerance:
compare_flag = True
compare_results[metric_name] = compare_flag
if len(compare_results):
test_pass = all(list(compare_results.values()))
else:
test_pass = False
return fps, output_result, test_pass
def get_backend_fps_metric(deploy_cfg_path: str, model_cfg_path: Path,
convert_checkpoint_path: str, device_type: str,
logger: logging.Logger, pytorch_metric: dict,
metric_info: dict, backend_name: str,
precision_type: str, convert_result: bool,
report_dict: dict, infer_type: str, log_path: Path,
dataset_info: dict, report_txt_path: Path,
model_name: str):
"""Get backend fps and metric.
Args:
deploy_cfg_path (str): Deploy config path.
model_cfg_path (Path): Model config path.
convert_checkpoint_path (str): Converted checkpoint path.
device_type (str): Device for converting.
logger (logging.Logger): Logger handler.
pytorch_metric (dict): Pytorch metric info dict get from metafile.
metric_info (dict): Metric info from test yaml.
backend_name (str): Backend name.
precision_type (str): Precision type for evaluation.
convert_result (bool): Backend convert result.
report_dict (dict): Backend convert result.
infer_type (str): Infer type.
log_path (Path): Logger save path.
dataset_info (dict): Dataset info.
report_txt_path (Path): report txt save path.
model_name (str): Name of model in test yaml.
"""
work_dir = log_path.parent.joinpath('test_logs')
if not work_dir.exists():
work_dir.mkdir(parents=True, exist_ok=True)
cmd_lines = [
'python3 tools/test.py', f'{deploy_cfg_path}', f'{model_cfg_path}',
f'--model {convert_checkpoint_path}', f'--work-dir "{work_dir}"',
'--speed-test', f'--device {device_type}'
]
codebase_name = get_codebase(str(deploy_cfg_path)).value
# to stop Dataloader OOM in docker CI
if codebase_name not in ['mmagic', 'mmocr', 'mmpretrain']:
cfg_options = 'test_dataloader.num_workers=0 ' \
'test_dataloader.persistent_workers=False ' \
'val_dataloader.num_workers=0 ' \
'val_dataloader.persistent_workers=False '
cmd_lines.append(f'--cfg-options {cfg_options}')
# Test backend
return_code = run_cmd(cmd_lines, log_path)
fps, backend_metric, test_pass = get_fps_metric(return_code,
pytorch_metric,
metric_info, work_dir)
logger.info(f'test_pass= {test_pass}, results= {backend_metric}')
metric_list = []
for metric in metric_info:
value = '-'
if metric in backend_metric:
value = backend_metric[metric]
metric_list.append({metric: value})
dataset_type = dataset_info['dataset']
task_name = dataset_info['task']
# update the report
update_report(
report_dict=report_dict,
model_name=model_name,
model_config=str(model_cfg_path),
task_name=task_name,
checkpoint=convert_checkpoint_path,
dataset=dataset_type,
backend_name=backend_name,
deploy_config=str(deploy_cfg_path),
static_or_dynamic=infer_type,
precision_type=precision_type,
conversion_result=str(convert_result),
fps=fps,
metric_info=metric_list,
test_pass=str(test_pass),
report_txt_path=report_txt_path,
codebase_name=codebase_name)
def get_precision_type(deploy_cfg_name: str):
"""Get backend precision_type according to the name of deploy config.
Args:
deploy_cfg_name (str): Name of the deploy config.
Returns:
Str: precision_type: Precision type of the deployment name.
"""
if 'int8' in deploy_cfg_name:
precision_type = 'int8'
elif 'fp16' in deploy_cfg_name:
precision_type = 'fp16'
else:
precision_type = 'fp32'
return precision_type
def replace_top_in_pipeline_json(backend_output_path: Path,
logger: logging.Logger):
"""Replace `topk` with `num_classes` in `pipeline.json`.
Args:
backend_output_path (Path): Backend convert result path.
logger (logger.Logger): Logger handler.
"""
sdk_pipeline_json_path = backend_output_path.joinpath('pipeline.json')
sdk_pipeline_json = mmengine.load(sdk_pipeline_json_path)
pipeline_tasks = sdk_pipeline_json.get('pipeline', {}).get('tasks', [])
for index, task in enumerate(pipeline_tasks):
if task.get('name', '') != 'postprocess':
continue
num_classes = task.get('params', {}).get('num_classes', 0)
if 'topk' not in task.get('params', {}):
continue
sdk_pipeline_json['pipeline']['tasks'][index]['params']['topk'] = \
num_classes
logger.info(f'sdk_pipeline_json = {sdk_pipeline_json}')
mmengine.dump(
sdk_pipeline_json, sdk_pipeline_json_path, sort_keys=False, indent=4)
logger.info('replace done')
def gen_log_path(backend_output_path: Path, log_name: str):
if not backend_output_path.exists():
backend_output_path.mkdir(parents=True, exist_ok=True)
log_path = backend_output_path.joinpath(log_name)
if log_path.exists():
os.remove(str(log_path))
return log_path
def run_cmd(cmd_lines: List[str], log_path: Path):
"""
Args:
cmd_lines: (list[str]): A command in multiple line style.
log_path (Path): Path to log file.
Returns:
int: error code.
"""
import platform
system = platform.system().lower()
if system == 'windows':
sep = r'`'
else: # 'Linux', 'Darwin'
sep = '\\'
cmd_for_run = ' '.join(cmd_lines)
cmd_for_log = f' {sep}\n'.join(cmd_lines) + '\n'
parent_path = log_path.parent
if not parent_path.exists():
parent_path.mkdir(parents=True, exist_ok=True)
logger = get_root_logger()
logger.info(100 * '-')
logger.info(f'Start running cmd\n{cmd_for_log}')
logger.info(f'Logging log to \n{log_path}')
with open(log_path, 'w', encoding='utf-8') as file_handler:
# write cmd
file_handler.write(f'Command:\n{cmd_for_log}\n')
file_handler.flush()
process_res = subprocess.Popen(
cmd_for_run,
cwd=str(Path(__file__).absolute().parent.parent),
shell=True,
stdout=file_handler,
stderr=file_handler)
process_res.wait()
return_code = process_res.returncode
if return_code != 0:
logger.error(f'Got shell return code={return_code}')
with open(log_path, 'r') as f:
content = f.read()
logger.error(f'Log error message\n{content}')
return return_code
def get_backend_result(pipeline_info: dict, model_cfg_path: Path,
checkpoint_path: Path, work_dir: Path, device_type: str,
pytorch_metric: dict, metric_info: dict,
report_dict: dict, test_type: str,
logger: logging.Logger, backend_file_name: Union[str,
list],
report_txt_path: Path, metafile_dataset: str,
model_name: str):
"""Convert model to onnx and then get metric.
Args:
pipeline_info (dict): Pipeline info of test yaml.
model_cfg_path (Path): Model config file path.
checkpoint_path (Path): Checkpoints path.
work_dir (Path): A working directory.
device_type (str): A string specifying device, defaults to 'cuda'.
pytorch_metric (dict): All pytorch metric info.
metric_info (dict): Metrics info.
report_dict (dict): Report info dict.
test_type (str): Test type. 'precision' or 'convert'.
logger (logging.Logger): Logger.
backend_file_name (str | list): backend file save name.
report_txt_path (Path): report txt path.
metafile_dataset (str): Dataset type get from metafile.
model_name (str): Name of model in test yaml.
"""
# get backend_test info
backend_test = pipeline_info.get('backend_test', False)
# get convert_image info
convert_image_info = pipeline_info.get('convert_image', None)
if convert_image_info is not None:
input_img_path = \
convert_image_info.get('input_img', './tests/data/tiger.jpeg')
test_img_path = convert_image_info.get('test_img', None)
else:
input_img_path = './tests/data/tiger.jpeg'
test_img_path = None
# get sdk_cfg info
sdk_config = pipeline_info.get('sdk_config', None)
if sdk_config is not None:
sdk_config = Path(sdk_config)
# Overwrite metric tolerance
metric_tolerance = pipeline_info.get('metric_tolerance', None)
if metric_tolerance is not None:
for metric, new_tolerance in metric_tolerance.items():
if metric not in metric_info:
logger.debug(f'{metric} not in {metric_info},'
'skip compare it...')
continue
if new_tolerance is None:
logger.debug('new_tolerance is None, skip it ...')
continue
metric_info[metric]['tolerance'] = new_tolerance
if backend_test is False and sdk_config is None:
test_type = 'convert'
deploy_cfg_path = Path(pipeline_info.get('deploy_config'))
backend_name = str(get_backend(str(deploy_cfg_path)).name).lower()
# change device_type for special case
if backend_name in ['ncnn', 'openvino']:
device_type = 'cpu'
elif backend_name == 'onnxruntime' and device_type != 'cpu':
import onnxruntime as ort
if ort.get_device() != 'GPU':
device_type = 'cpu'
logger.warning('Device type is forced to cpu '
'since onnxruntime-gpu is not installed')
infer_type = \
'dynamic' if is_dynamic_shape(str(deploy_cfg_path)) else 'static'
precision_type = get_precision_type(deploy_cfg_path.name)
codebase_name = get_codebase(str(deploy_cfg_path)).value
backend_output_path = Path(work_dir). \
joinpath(Path(checkpoint_path).parent.parent.name,
Path(checkpoint_path).parent.name,
backend_name,
infer_type,
precision_type,
Path(checkpoint_path).stem)
backend_output_path.mkdir(parents=True, exist_ok=True)
# convert cmd lines
cmd_lines = [
'python3 ./tools/deploy.py', f'{deploy_cfg_path}', f'{model_cfg_path}',
f'"{checkpoint_path}"', f'"{input_img_path}"',
f'--work-dir "{backend_output_path}"', f'--device {device_type}',
'--log-level INFO'
]
if sdk_config is not None and test_type == 'precision':
cmd_lines += ['--dump-info']
if test_img_path is not None:
cmd_lines += [f'--test-img {test_img_path}']
if precision_type == 'int8':
calib_dataset_cfg = pipeline_info.get('calib_dataset_cfg', None)
if calib_dataset_cfg is not None:
cmd_lines += [f'--calib-dataset-cfg {calib_dataset_cfg}']
convert_log_path = backend_output_path.joinpath('convert_log.txt')
return_code = run_cmd(cmd_lines, convert_log_path)
convert_result = return_code == 0
logger.info(f'Got convert_result = {convert_result}')
if isinstance(backend_file_name, list):
report_checkpoint = backend_output_path.joinpath(backend_file_name[0])
convert_checkpoint_path = ''
for backend_file in backend_file_name:
backend_path = backend_output_path.joinpath(backend_file)
convert_checkpoint_path += f'{backend_path} '
else:
report_checkpoint = backend_output_path.joinpath(backend_file_name)
convert_checkpoint_path = \
str(backend_output_path.joinpath(backend_file_name))
# Test the model
if convert_result and test_type == 'precision':
# test the model metric
if backend_test:
log_path = \
gen_log_path(backend_output_path.joinpath('backend'),
'test_log.txt')
get_backend_fps_metric(
deploy_cfg_path=str(deploy_cfg_path),
model_cfg_path=model_cfg_path,
convert_checkpoint_path=convert_checkpoint_path,
device_type=device_type,
logger=logger,
pytorch_metric=pytorch_metric,
metric_info=metric_info,
backend_name=backend_name,
precision_type=precision_type,
convert_result=convert_result,
report_dict=report_dict,
infer_type=infer_type,
log_path=log_path,
dataset_info=metafile_dataset,
report_txt_path=report_txt_path,
model_name=model_name)
if sdk_config is not None:
if codebase_name == 'mmpretrain' or codebase_name == 'mmaction':
replace_top_in_pipeline_json(backend_output_path, logger)
log_path = gen_log_path(
backend_output_path.joinpath('sdk'), 'test_log.txt')
if backend_name == 'onnxruntime':
# sdk only support onnxruntime of cpu
device_type = 'cpu'
# sdk test
get_backend_fps_metric(
deploy_cfg_path=str(sdk_config),
model_cfg_path=model_cfg_path,
convert_checkpoint_path=str(backend_output_path),
device_type=device_type,
logger=logger,
pytorch_metric=pytorch_metric,
metric_info=metric_info,
backend_name=f'SDK-{backend_name}',
precision_type=precision_type,
convert_result=convert_result,
report_dict=report_dict,
infer_type=infer_type,
log_path=log_path,
dataset_info=metafile_dataset,
report_txt_path=report_txt_path,
model_name=model_name)
else:
logger.info('Only test convert, saving to report...')
metric_list = [{metric: '-'} for metric in metric_info]
fps = '-'
test_pass = convert_result
dataset_type = metafile_dataset['dataset']
task_name = metafile_dataset['task']
# update the report
update_report(
report_dict=report_dict,
model_name=model_name,
model_config=str(model_cfg_path),
task_name=task_name,
checkpoint=str(report_checkpoint),
dataset=dataset_type,
backend_name=backend_name,
deploy_config=str(deploy_cfg_path),
static_or_dynamic=infer_type,
precision_type=precision_type,
conversion_result=str(convert_result),
fps=fps,
metric_info=metric_list,
test_pass=str(test_pass),
report_txt_path=report_txt_path,
codebase_name=codebase_name)
def save_report(report_info: dict, report_save_path: Path,
logger: logging.Logger):
"""Convert model to onnx and then get metric.
Args:
report_info (dict): Report info dict.
report_save_path (Path): Report save path.
logger (logging.Logger): Logger.
"""
logger.info('Saving regression test report to '
f'{report_save_path}, pls wait...')
try:
df = pd.DataFrame(report_info)
df.to_excel(report_save_path)
except ValueError:
logger.info(f'Got error report_info = {report_info}')
logger.info('Saved regression test report to '
f'{report_save_path}.')
def _filter_string(inputs):
"""Remove non alpha&number character from input string.
Args:
inputs(str): Input string.
Returns:
str: Output of only alpha&number string.
"""
outputs = ''.join([i.lower() for i in inputs if i.isalnum()])
return outputs
def main():
args = parse_args()
set_start_method('spawn')
logger = get_root_logger(log_level=args.log_level)
test_type = 'precision' if args.performance else 'convert'
logger.info(f'Processing regression test in {test_type} mode.')
backend_file_info = {
'onnxruntime': 'end2end.onnx',
'tensorrt': 'end2end.engine',
'openvino': 'end2end.xml',
'ncnn': ['end2end.param', 'end2end.bin'],
'pplnn': ['end2end.onnx', 'end2end.json'],
'torchscript': 'end2end.pt'
}
backend_list = args.backends
if backend_list is None:
backend_list = [
'onnxruntime', 'tensorrt', 'openvino', 'ncnn', 'pplnn',
'torchscript'
]
assert isinstance(backend_list, list)
logger.info(f'Regression test backend list = {backend_list}')
args.models = [_filter_string(s) for s in args.models]
logger.info(f'Regression test models list = {args.models}')
assert ' ' not in args.work_dir, \
f'No empty space included in {args.work_dir}'
assert ' ' not in args.checkpoint_dir, \
f'No empty space included in {args.checkpoint_dir}'
work_dir = Path(args.work_dir)
work_dir.mkdir(parents=True, exist_ok=True)
deploy_yaml_list = [
f'./tests/regression/{codebase}.yml' for codebase in args.codebase
]
for deploy_yaml in deploy_yaml_list:
if not Path(deploy_yaml).exists():
raise FileNotFoundError(f'deploy_yaml {deploy_yaml} not found, '
'please check !')
with open(deploy_yaml) as f:
yaml_info = yaml.load(f, Loader=yaml.FullLoader)
report_save_path = \
work_dir.joinpath(Path(deploy_yaml).stem + '_report.xlsx')
report_txt_path = report_save_path.with_suffix('.txt')
report_dict = {
'Model': [],
'Model Config': [],
'Task': [],
'Checkpoint': [],
'Dataset': [],
'Backend': [],
'Deploy Config': [],
'Static or Dynamic': [],
'Precision Type': [],
'Conversion Result': [],
# 'FPS': []
}
global_info = yaml_info.get('globals')
metric_info = global_info.get('metric_info', {})
for metric_name in metric_info:
report_dict.update({metric_name: []})
report_dict.update({'Test Pass': []})
global_info.update({'checkpoint_dir': args.checkpoint_dir})
global_info.update(
{'codebase_name': Path(deploy_yaml).stem.split('_')[0]})
with open(report_txt_path, 'w') as f_report:
title_str = ''
for key in report_dict:
title_str += f'{key},'
title_str = title_str[:-1] + '\n'
f_report.write(title_str) # clear the report tmp file
models_info = yaml_info.get('models')
for models in tqdm(models_info):
model_name_origin = models.get('name', 'model')
model_name_new = _filter_string(model_name_origin)
if 'model_configs' not in models:
logger.warning('Can not find field "model_configs", '
f'skipping {model_name_origin}...')
continue
if args.models != ['all'] and model_name_new not in args.models:
logger.info(
f'Test specific model mode, skip {model_name_origin}...')
continue
try:
model_metafile_info, checkpoint_save_dir, codebase_dir = \
get_model_metafile_info(global_info, models, logger)
except Exception as e:
logger.error(f'Failed to get meta info {e}')
continue
for model_config in model_metafile_info:
logger.info(f'Processing test for {model_config}...')
# Get backends info
pipelines_info = models.get('pipelines', None)
if pipelines_info is None:
logger.warning('pipelines_info is None, skip it...')
continue
# Get model config path
model_cfg_path = Path(codebase_dir).joinpath(model_config)
assert model_cfg_path.exists()
# Get checkpoint path
checkpoint_name = Path(
model_metafile_info.get(model_config).get('Weights')).name
checkpoint_path = Path(checkpoint_save_dir, checkpoint_name)
assert checkpoint_path.exists()
# Get pytorch from metafile.yml
pytorch_metric, metafile_dataset = get_pytorch_result(
model_name_origin, model_metafile_info, checkpoint_path,
model_cfg_path, model_config, metric_info, report_dict,
logger, report_txt_path, global_info.get('codebase_name'))
for pipeline in pipelines_info:
deploy_config = pipeline.get('deploy_config')