-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
show_result.py
291 lines (247 loc) · 10.7 KB
/
show_result.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# Copyright (c) OpenMMLab. All rights reserved.
from os import path as osp
import mmcv
import numpy as np
import trimesh
from .image_vis import (draw_camera_bbox3d_on_img, draw_depth_bbox3d_on_img,
draw_lidar_bbox3d_on_img)
def _write_obj(points, out_filename):
"""Write points into ``obj`` format for meshlab visualization.
Args:
points (np.ndarray): Points in shape (N, dim).
out_filename (str): Filename to be saved.
"""
N = points.shape[0]
fout = open(out_filename, 'w')
for i in range(N):
if points.shape[1] == 6:
c = points[i, 3:].astype(int)
fout.write(
'v %f %f %f %d %d %d\n' %
(points[i, 0], points[i, 1], points[i, 2], c[0], c[1], c[2]))
else:
fout.write('v %f %f %f\n' %
(points[i, 0], points[i, 1], points[i, 2]))
fout.close()
def _write_oriented_bbox(scene_bbox, out_filename):
"""Export oriented (around Z axis) scene bbox to meshes.
Args:
scene_bbox(list[ndarray] or ndarray): xyz pos of center and
3 lengths (x_size, y_size, z_size) and heading angle around Z axis.
Y forward, X right, Z upward. heading angle of positive X is 0,
heading angle of positive Y is 90 degrees.
out_filename(str): Filename.
"""
def heading2rotmat(heading_angle):
rotmat = np.zeros((3, 3))
rotmat[2, 2] = 1
cosval = np.cos(heading_angle)
sinval = np.sin(heading_angle)
rotmat[0:2, 0:2] = np.array([[cosval, -sinval], [sinval, cosval]])
return rotmat
def convert_oriented_box_to_trimesh_fmt(box):
ctr = box[:3]
lengths = box[3:6]
trns = np.eye(4)
trns[0:3, 3] = ctr
trns[3, 3] = 1.0
trns[0:3, 0:3] = heading2rotmat(box[6])
box_trimesh_fmt = trimesh.creation.box(lengths, trns)
return box_trimesh_fmt
if len(scene_bbox) == 0:
scene_bbox = np.zeros((1, 7))
scene = trimesh.scene.Scene()
for box in scene_bbox:
scene.add_geometry(convert_oriented_box_to_trimesh_fmt(box))
mesh_list = trimesh.util.concatenate(scene.dump())
# save to obj file
trimesh.io.export.export_mesh(mesh_list, out_filename, file_type='obj')
return
def show_result(points,
gt_bboxes,
pred_bboxes,
out_dir,
filename,
show=False,
snapshot=False,
pred_labels=None):
"""Convert results into format that is directly readable for meshlab.
Args:
points (np.ndarray): Points.
gt_bboxes (np.ndarray): Ground truth boxes.
pred_bboxes (np.ndarray): Predicted boxes.
out_dir (str): Path of output directory
filename (str): Filename of the current frame.
show (bool, optional): Visualize the results online. Defaults to False.
snapshot (bool, optional): Whether to save the online results.
Defaults to False.
pred_labels (np.ndarray, optional): Predicted labels of boxes.
Defaults to None.
"""
result_path = osp.join(out_dir, filename)
mmcv.mkdir_or_exist(result_path)
if show:
from .open3d_vis import Visualizer
vis = Visualizer(points)
if pred_bboxes is not None:
if pred_labels is None:
vis.add_bboxes(bbox3d=pred_bboxes)
else:
palette = np.random.randint(
0, 255, size=(pred_labels.max() + 1, 3)) / 256
labelDict = {}
for j in range(len(pred_labels)):
i = int(pred_labels[j].numpy())
if labelDict.get(i) is None:
labelDict[i] = []
labelDict[i].append(pred_bboxes[j])
for i in labelDict:
vis.add_bboxes(
bbox3d=np.array(labelDict[i]),
bbox_color=palette[i],
points_in_box_color=palette[i])
if gt_bboxes is not None:
vis.add_bboxes(bbox3d=gt_bboxes, bbox_color=(0, 0, 1))
show_path = osp.join(result_path,
f'{filename}_online.png') if snapshot else None
vis.show(show_path)
if points is not None:
_write_obj(points, osp.join(result_path, f'{filename}_points.obj'))
if gt_bboxes is not None:
# bottom center to gravity center
gt_bboxes[..., 2] += gt_bboxes[..., 5] / 2
_write_oriented_bbox(gt_bboxes,
osp.join(result_path, f'{filename}_gt.obj'))
if pred_bboxes is not None:
# bottom center to gravity center
pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2
_write_oriented_bbox(pred_bboxes,
osp.join(result_path, f'{filename}_pred.obj'))
def show_seg_result(points,
gt_seg,
pred_seg,
out_dir,
filename,
palette,
ignore_index=None,
show=False,
snapshot=False):
"""Convert results into format that is directly readable for meshlab.
Args:
points (np.ndarray): Points.
gt_seg (np.ndarray): Ground truth segmentation mask.
pred_seg (np.ndarray): Predicted segmentation mask.
out_dir (str): Path of output directory
filename (str): Filename of the current frame.
palette (np.ndarray): Mapping between class labels and colors.
ignore_index (int, optional): The label index to be ignored, e.g.
unannotated points. Defaults to None.
show (bool, optional): Visualize the results online. Defaults to False.
snapshot (bool, optional): Whether to save the online results.
Defaults to False.
"""
# we need 3D coordinates to visualize segmentation mask
if gt_seg is not None or pred_seg is not None:
assert points is not None, \
'3D coordinates are required for segmentation visualization'
# filter out ignored points
if gt_seg is not None and ignore_index is not None:
if points is not None:
points = points[gt_seg != ignore_index]
if pred_seg is not None:
pred_seg = pred_seg[gt_seg != ignore_index]
gt_seg = gt_seg[gt_seg != ignore_index]
if gt_seg is not None:
gt_seg_color = palette[gt_seg]
gt_seg_color = np.concatenate([points[:, :3], gt_seg_color], axis=1)
if pred_seg is not None:
pred_seg_color = palette[pred_seg]
pred_seg_color = np.concatenate([points[:, :3], pred_seg_color],
axis=1)
result_path = osp.join(out_dir, filename)
mmcv.mkdir_or_exist(result_path)
# online visualization of segmentation mask
# we show three masks in a row, scene_points, gt_mask, pred_mask
if show:
from .open3d_vis import Visualizer
mode = 'xyzrgb' if points.shape[1] == 6 else 'xyz'
vis = Visualizer(points, mode=mode)
if gt_seg is not None:
vis.add_seg_mask(gt_seg_color)
if pred_seg is not None:
vis.add_seg_mask(pred_seg_color)
show_path = osp.join(result_path,
f'{filename}_online.png') if snapshot else None
vis.show(show_path)
if points is not None:
_write_obj(points, osp.join(result_path, f'{filename}_points.obj'))
if gt_seg is not None:
_write_obj(gt_seg_color, osp.join(result_path, f'{filename}_gt.obj'))
if pred_seg is not None:
_write_obj(pred_seg_color, osp.join(result_path,
f'{filename}_pred.obj'))
def show_multi_modality_result(img,
gt_bboxes,
pred_bboxes,
proj_mat,
out_dir,
filename,
box_mode='lidar',
img_metas=None,
show=False,
gt_bbox_color=(61, 102, 255),
pred_bbox_color=(241, 101, 72)):
"""Convert multi-modality detection results into 2D results.
Project the predicted 3D bbox to 2D image plane and visualize them.
Args:
img (np.ndarray): The numpy array of image in cv2 fashion.
gt_bboxes (:obj:`BaseInstance3DBoxes`): Ground truth boxes.
pred_bboxes (:obj:`BaseInstance3DBoxes`): Predicted boxes.
proj_mat (numpy.array, shape=[4, 4]): The projection matrix
according to the camera intrinsic parameters.
out_dir (str): Path of output directory.
filename (str): Filename of the current frame.
box_mode (str, optional): Coordinate system the boxes are in.
Should be one of 'depth', 'lidar' and 'camera'.
Defaults to 'lidar'.
img_metas (dict, optional): Used in projecting depth bbox.
Defaults to None.
show (bool, optional): Visualize the results online. Defaults to False.
gt_bbox_color (str or tuple(int), optional): Color of bbox lines.
The tuple of color should be in BGR order. Default: (255, 102, 61).
pred_bbox_color (str or tuple(int), optional): Color of bbox lines.
The tuple of color should be in BGR order. Default: (72, 101, 241).
"""
if box_mode == 'depth':
draw_bbox = draw_depth_bbox3d_on_img
elif box_mode == 'lidar':
draw_bbox = draw_lidar_bbox3d_on_img
elif box_mode == 'camera':
draw_bbox = draw_camera_bbox3d_on_img
else:
raise NotImplementedError(f'unsupported box mode {box_mode}')
result_path = osp.join(out_dir, filename)
mmcv.mkdir_or_exist(result_path)
if show:
show_img = img.copy()
if gt_bboxes is not None:
show_img = draw_bbox(
gt_bboxes, show_img, proj_mat, img_metas, color=gt_bbox_color)
if pred_bboxes is not None:
show_img = draw_bbox(
pred_bboxes,
show_img,
proj_mat,
img_metas,
color=pred_bbox_color)
mmcv.imshow(show_img, win_name='project_bbox3d_img', wait_time=0)
if img is not None:
mmcv.imwrite(img, osp.join(result_path, f'{filename}_img.png'))
if gt_bboxes is not None:
gt_img = draw_bbox(
gt_bboxes, img, proj_mat, img_metas, color=gt_bbox_color)
mmcv.imwrite(gt_img, osp.join(result_path, f'{filename}_gt.png'))
if pred_bboxes is not None:
pred_img = draw_bbox(
pred_bboxes, img, proj_mat, img_metas, color=pred_bbox_color)
mmcv.imwrite(pred_img, osp.join(result_path, f'{filename}_pred.png'))