-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
centerpoint_voxel0075_second_secfpn_8xb4-cyclic-20e_nus-3d.py
145 lines (141 loc) · 4.59 KB
/
centerpoint_voxel0075_second_secfpn_8xb4-cyclic-20e_nus-3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
_base_ = ['./centerpoint_voxel01_second_secfpn_8xb4-cyclic-20e_nus-3d.py']
# If point cloud range is changed, the models should also change their point
# cloud range accordingly
voxel_size = [0.075, 0.075, 0.2]
point_cloud_range = [-54, -54, -5.0, 54, 54, 3.0]
# Using calibration info convert the Lidar-coordinate point cloud range to the
# ego-coordinate point cloud range could bring a little promotion in nuScenes.
# point_cloud_range = [-54, -54.8, -5.0, 54, 53.2, 3.0]
# For nuScenes we usually do 10-class detection
class_names = [
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
]
data_prefix = dict(pts='samples/LIDAR_TOP', img='', sweeps='sweeps/LIDAR_TOP')
model = dict(
data_preprocessor=dict(
voxel_layer=dict(
voxel_size=voxel_size, point_cloud_range=point_cloud_range)),
pts_middle_encoder=dict(sparse_shape=[41, 1440, 1440]),
pts_bbox_head=dict(
bbox_coder=dict(
voxel_size=voxel_size[:2], pc_range=point_cloud_range[:2])),
train_cfg=dict(
pts=dict(
grid_size=[1440, 1440, 40],
voxel_size=voxel_size,
point_cloud_range=point_cloud_range)),
test_cfg=dict(
pts=dict(voxel_size=voxel_size[:2], pc_range=point_cloud_range[:2])))
dataset_type = 'NuScenesDataset'
data_root = 'data/nuscenes/'
backend_args = None
db_sampler = dict(
data_root=data_root,
info_path=data_root + 'nuscenes_dbinfos_train.pkl',
rate=1.0,
prepare=dict(
filter_by_difficulty=[-1],
filter_by_min_points=dict(
car=5,
truck=5,
bus=5,
trailer=5,
construction_vehicle=5,
traffic_cone=5,
barrier=5,
motorcycle=5,
bicycle=5,
pedestrian=5)),
classes=class_names,
sample_groups=dict(
car=2,
truck=3,
construction_vehicle=7,
bus=4,
trailer=6,
barrier=2,
motorcycle=6,
bicycle=6,
pedestrian=2,
traffic_cone=2),
points_loader=dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=5,
use_dim=[0, 1, 2, 3, 4],
backend_args=backend_args),
backend_args=backend_args)
train_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=5,
use_dim=5,
backend_args=backend_args),
dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=9,
use_dim=[0, 1, 2, 3, 4],
pad_empty_sweeps=True,
remove_close=True,
backend_args=backend_args),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(type='ObjectSample', db_sampler=db_sampler),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.3925, 0.3925],
scale_ratio_range=[0.95, 1.05],
translation_std=[0, 0, 0]),
dict(
type='RandomFlip3D',
sync_2d=False,
flip_ratio_bev_horizontal=0.5,
flip_ratio_bev_vertical=0.5),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectNameFilter', classes=class_names),
dict(type='PointShuffle'),
dict(
type='Pack3DDetInputs',
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=5,
use_dim=5,
backend_args=backend_args),
dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=9,
use_dim=[0, 1, 2, 3, 4],
pad_empty_sweeps=True,
remove_close=True,
backend_args=backend_args),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),
dict(type='RandomFlip3D'),
dict(
type='PointsRangeFilter', point_cloud_range=point_cloud_range)
]),
dict(type='Pack3DDetInputs', keys=['points'])
]
train_dataloader = dict(
dataset=dict(
dataset=dict(
pipeline=train_pipeline, metainfo=dict(classes=class_names))))
test_dataloader = dict(
dataset=dict(pipeline=test_pipeline, metainfo=dict(classes=class_names)))
val_dataloader = dict(
dataset=dict(pipeline=test_pipeline, metainfo=dict(classes=class_names)))