We provide the config files for CLIFF: CLIFF: Carrying Location Information in Full Frames into Human Pose and Shape Estimation.
@Inproceedings{li2022cliff,
author = {Li, Zhihao and
Liu, Jianzhuang and
Zhang, Zhensong and
Xu, Songcen and
Yan, Youliang},
title = {CLIFF: Carrying Location Information in Full Frames into Human Pose and Shape Estimation},
booktitle = {ECCV},
year = {2022}
}
- SMPL v1.0 is used in our experiments.
- J_regressor_extra.npy
- J_regressor_h36m.npy
- pascal_occluders.npy
- resnet50_a1h2_176-001a1197.pth
- resnet50_a1h2_176-001a1197.pth(alternative download link)
Download the above resources and arrange them in the following file structure:
mmhuman3d
├── mmhuman3d
├── docs
├── tests
├── tools
├── configs
└── data
├── checkpoints
│ ├── resnet50_a1h2_176-001a1197.pth
├── body_models
│ ├── J_regressor_extra.npy
│ ├── J_regressor_h36m.npy
│ ├── smpl_mean_params.npz
│ └── smpl
│ ├── SMPL_FEMALE.pkl
│ ├── SMPL_MALE.pkl
│ └── SMPL_NEUTRAL.pkl
├── preprocessed_datasets
│ ├── cliff_coco_train.npz
│ ├── cliff_mpii_train.npz
│ ├── h36m_mosh_train.npz
│ ├── muco3dhp_train.npz
│ ├── mpi_inf_3dhp_train.npz
│ └── pw3d_test.npz
├── occluders
│ ├── pascal_occluders.npy
└── datasets
├── coco
├── h36m
├── muco
├── mpi_inf_3dhp
├── mpii
└── pw3d
Stage 1: First use resnet50_pw3d_cache.py to train.
Stage 2: After around 150 epoches, switch to resume.py by using "--resume-from" optional argument.
We evaluate HMR on 3DPW. Values are MPJPE/PA-MPJPE.
Config | 3DPW | Download |
---|---|---|
Stage 1: resnet50_pw3d_cache.py | 48.65 / 76.49 | model | log |
Stage 2: resnet50_pw3d_cache.py | 47.38 / 75.08 | model | log |