-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathbottomup_demo.py
237 lines (197 loc) · 7.02 KB
/
bottomup_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright (c) OpenMMLab. All rights reserved.
import logging
import mimetypes
import os
import time
from argparse import ArgumentParser
import cv2
import json_tricks as json
import mmcv
import mmengine
import numpy as np
from mmengine.logging import print_log
from mmpose.apis import inference_bottomup, init_model
from mmpose.registry import VISUALIZERS
from mmpose.structures import split_instances
def process_one_image(args,
img,
pose_estimator,
visualizer=None,
show_interval=0):
"""Visualize predicted keypoints (and heatmaps) of one image."""
# inference a single image
batch_results = inference_bottomup(pose_estimator, img)
results = batch_results[0]
# show the results
if isinstance(img, str):
img = mmcv.imread(img, channel_order='rgb')
elif isinstance(img, np.ndarray):
img = mmcv.bgr2rgb(img)
if visualizer is not None:
visualizer.add_datasample(
'result',
img,
data_sample=results,
draw_gt=False,
draw_bbox=False,
draw_heatmap=args.draw_heatmap,
show_kpt_idx=args.show_kpt_idx,
show=args.show,
wait_time=show_interval,
kpt_thr=args.kpt_thr)
return results.pred_instances
def parse_args():
parser = ArgumentParser()
parser.add_argument('config', help='Config file')
parser.add_argument('checkpoint', help='Checkpoint file')
parser.add_argument(
'--input', type=str, default='', help='Image/Video file')
parser.add_argument(
'--show',
action='store_true',
default=False,
help='whether to show img')
parser.add_argument(
'--output-root',
type=str,
default='',
help='root of the output img file. '
'Default not saving the visualization images.')
parser.add_argument(
'--save-predictions',
action='store_true',
default=False,
help='whether to save predicted results')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--draw-heatmap',
action='store_true',
help='Visualize the predicted heatmap')
parser.add_argument(
'--show-kpt-idx',
action='store_true',
default=False,
help='Whether to show the index of keypoints')
parser.add_argument(
'--kpt-thr', type=float, default=0.3, help='Keypoint score threshold')
parser.add_argument(
'--radius',
type=int,
default=3,
help='Keypoint radius for visualization')
parser.add_argument(
'--thickness',
type=int,
default=1,
help='Link thickness for visualization')
parser.add_argument(
'--show-interval', type=int, default=0, help='Sleep seconds per frame')
args = parser.parse_args()
return args
def main():
args = parse_args()
assert args.show or (args.output_root != '')
assert args.input != ''
output_file = None
if args.output_root:
mmengine.mkdir_or_exist(args.output_root)
output_file = os.path.join(args.output_root,
os.path.basename(args.input))
if args.input == 'webcam':
output_file += '.mp4'
if args.save_predictions:
assert args.output_root != ''
args.pred_save_path = f'{args.output_root}/results_' \
f'{os.path.splitext(os.path.basename(args.input))[0]}.json'
# build the model from a config file and a checkpoint file
if args.draw_heatmap:
cfg_options = dict(model=dict(test_cfg=dict(output_heatmaps=True)))
else:
cfg_options = None
model = init_model(
args.config,
args.checkpoint,
device=args.device,
cfg_options=cfg_options)
# build visualizer
model.cfg.visualizer.radius = args.radius
model.cfg.visualizer.line_width = args.thickness
visualizer = VISUALIZERS.build(model.cfg.visualizer)
visualizer.set_dataset_meta(model.dataset_meta)
if args.input == 'webcam':
input_type = 'webcam'
else:
input_type = mimetypes.guess_type(args.input)[0].split('/')[0]
if input_type == 'image':
# inference
pred_instances = process_one_image(
args, args.input, model, visualizer, show_interval=0)
if args.save_predictions:
pred_instances_list = split_instances(pred_instances)
if output_file:
img_vis = visualizer.get_image()
mmcv.imwrite(mmcv.rgb2bgr(img_vis), output_file)
elif input_type in ['webcam', 'video']:
if args.input == 'webcam':
cap = cv2.VideoCapture(0)
else:
cap = cv2.VideoCapture(args.input)
video_writer = None
pred_instances_list = []
frame_idx = 0
while cap.isOpened():
success, frame = cap.read()
frame_idx += 1
if not success:
break
pred_instances = process_one_image(args, frame, model, visualizer,
0.001)
if args.save_predictions:
# save prediction results
pred_instances_list.append(
dict(
frame_id=frame_idx,
instances=split_instances(pred_instances)))
# output videos
if output_file:
frame_vis = visualizer.get_image()
if video_writer is None:
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# the size of the image with visualization may vary
# depending on the presence of heatmaps
video_writer = cv2.VideoWriter(
output_file,
fourcc,
25, # saved fps
(frame_vis.shape[1], frame_vis.shape[0]))
video_writer.write(mmcv.rgb2bgr(frame_vis))
if args.show:
# press ESC to exit
if cv2.waitKey(5) & 0xFF == 27:
break
time.sleep(args.show_interval)
if video_writer:
video_writer.release()
cap.release()
else:
args.save_predictions = False
raise ValueError(
f'file {os.path.basename(args.input)} has invalid format.')
if args.save_predictions:
with open(args.pred_save_path, 'w') as f:
json.dump(
dict(
meta_info=model.dataset_meta,
instance_info=pred_instances_list),
f,
indent='\t')
print(f'predictions have been saved at {args.pred_save_path}')
if output_file:
input_type = input_type.replace('webcam', 'video')
print_log(
f'the output {input_type} has been saved at {output_file}',
logger='current',
level=logging.INFO)
if __name__ == '__main__':
main()