-
Notifications
You must be signed in to change notification settings - Fork 21
/
prime.go
88 lines (76 loc) · 1.94 KB
/
prime.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
// prime.go - Generate safe primes
//
// Copyright 2013-2017 Sudhi Herle <sudhi.herle-at-gmail-dot-com>
// License: MIT
package srp
import (
"crypto/rand"
"math/big"
)
// safePrime generates a safe prime; i.e., a prime 'p' such that 2p+1 is also prime.
func safePrime(bits int) (*big.Int, error) {
a := new(big.Int)
for {
p, err := rand.Prime(rand.Reader, bits)
if err != nil {
return nil, err
}
// 2p+1
a = a.Lsh(p, 1)
a = a.Add(a, one)
if a.ProbablyPrime(20) {
return a, nil
}
}
// never reached
return nil, nil
}
// Return true if g is a generator for safe prime p
//
// From Cryptography Theory & Practive, Stinson and Paterson (Th. 6.8 pp 196):
// If p > 2 is a prime and g is in Zp*, then
// g is a primitive element modulo p iff g ^ (p-1)/q != 1 (mod p)
// for all primes q such that q divides (p-1).
//
// "Primitive Element" and "Generator" are the same thing in Number Theory.
//
// Code below added as a result of bug pointed out by Dharmalingam G. (May 2019)
func isGenerator(g, p *big.Int) bool {
p1 := big.NewInt(0).Sub(p, one)
q := big.NewInt(0).Rsh(p1, 1) // q = p-1/2 = ((p-1) >> 1)
// p is a safe prime. i.e., it is of the form 2q+1 where q is prime.
//
// => p-1 = 2q, where q is a prime.
//
// All factors of p-1 are: {2, q, 2q}
//
// So, our check really comes down to:
// 1) g ^ (p-1/2q) != 1 mod p
// => g ^ (2q/2q) != 1 mod p
// => g != 1 mod p
// Trivial case. We ignore this.
//
// 2) g ^ (p-1/2) != 1 mod p
// => g ^ (2q/2) != 1 mod p
// => g ^ q != 1 mod p
//
// 3) g ^ (p-1/q) != 1 mod p
// => g ^ (2q/q) != 1 mod p
// => g ^ 2 != 1 mod p
//
// g ^ 2 mod p
if !ok(g, big.NewInt(0).Lsh(one, 1), p) {
return false
}
// g ^ q mod p
if !ok(g, q, p) {
return false
}
return true
}
func ok(g, x *big.Int, p *big.Int) bool {
z := big.NewInt(0).Exp(g, x, p)
// the expmod should NOT be 1
return z.Cmp(one) != 0
}
// vim: noexpandtab:sw=8:ts=8:tw=92: