-
Notifications
You must be signed in to change notification settings - Fork 180
/
Copy pathquadratic.py
34 lines (25 loc) · 1.18 KB
/
quadratic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
"""
Optuna example that optimizes a simple quadratic function.
In this example, we optimize a simple quadratic function. We also demonstrate how to continue an
optimization and to use timeouts.
"""
import optuna
# Define a simple 2-dimensional objective function whose minimum value is -1 when (x, y) = (0, -1).
def objective(trial):
x = trial.suggest_float("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 1])
return x**2 + y
if __name__ == "__main__":
# Let us minimize the objective function above.
print("Running 10 trials...")
study = optuna.create_study()
study.optimize(objective, n_trials=10)
print("Best value: {} (params: {})\n".format(study.best_value, study.best_params))
# We can continue the optimization as follows.
print("Running 20 additional trials...")
study.optimize(objective, n_trials=20)
print("Best value: {} (params: {})\n".format(study.best_value, study.best_params))
# We can specify the timeout instead of a number of trials.
print("Running additional trials in 2 seconds...")
study.optimize(objective, timeout=2.0)
print("Best value: {} (params: {})\n".format(study.best_value, study.best_params))